Abstract:
An interaction system is described which uses a depth camera to capture a depth image of a physical object placed on, or in vicinity to, an interactive surface. The interaction system also uses a video camera to capture a video image of the physical object. The interaction system can then generate a 3D virtual object based on the depth image and video image. The interaction system then uses a 3D projector to project the 3D virtual object back onto the interactive surface, e.g., in a mirrored relationship to the physical object. A user may then capture and manipulate the 3D virtual object in any manner. Further, the user may construct a composite model based on smaller component 3D virtual objects. The interaction system uses a projective texturing technique to present a realistic-looking 3D virtual object on a surface having any geometry.
Abstract:
The subject disclosure is directed towards detecting symbolic activity within a given environment using a context-dependent grammar. In response to receiving sets of input data corresponding to one or more input modalities, a context-aware interactive system processes a model associated with interpreting the symbolic activity using context data for the given environment. Based on the model, related sets of input data are determined. The context-aware interactive system uses the input data to interpret user intent with respect to the input and thereby, identify one or more commands for a target output mechanism.
Abstract:
A system and method are disclosed for providing a touch interface for electronic devices. The touch interface can be any surface. As one example, a table top can be used as a touch sensitive interface. In one embodiment, the system determines a touch region of the surface, and correlates that touch region to a display of an electronic device for which input is provided. The system may have a 3D camera that identifies the relative position of a user's hands to the touch region to allow for user input. Note that the user's hands do not occlude the display. The system may render a representation of the user's hand on the display in order for the user to interact with elements on the display screen.
Abstract:
A 3-D imaging system for recognition and interpretation of gestures to control a computer. The system includes a 3-D imaging system that performs gesture recognition and interpretation based on a previous mapping of a plurality of hand poses and orientations to user commands for a given user. When the user is identified to the system, the imaging system images gestures presented by the user, performs a lookup for the user command associated with the captured image(s), and executes the user command(s) to effect control of the computer, programs, and connected devices.
Abstract:
Effects of undesired infrared light are reduced in an imaging system using an infrared light source. The desired infrared light source is activated and a first set of imaging data is captured during a first image capture interval. The desired infrared light source is then deactivated, and a second set of image data is captured during a second image capture interval. A composite set of image data is then generated by subtracting from first values in the first set of image data corresponding second values in the second set of image data. The composite set of image data thus includes a set of imaging where data all infrared signals are collected, including both signals resulting from the IR source and other IR signals, from which is subtracted imaging in which no signals result from the IR course, leaving image data including signals resulting only from the IR source.
Abstract:
The subject application relates to a system(s) and/or methodology that facilitate vision-based projection of any image (still or moving) onto any surface. In particular, a front-projected computer vision-based interactive surface system is provided which uses a new commercially available projection technology to obtain a compact, self-contained form factor. The subject configuration addresses installation, calibration, and portability issues that are primary concerns in most vision-based table systems. The subject application also relates to determining whether an object is touching or hovering over an interactive surface based on an analysis of a shadow image.
Abstract:
A system and method are disclosed for providing a touch interface for electronic devices. The touch interface can be any surface. As one example, a table top can be used as a touch sensitive interface. In one embodiment, the system determines a touch region of the surface, and correlates that touch region to a display of an electronic device for which input is provided. The system may have a 3D camera that identifies the relative position of a user's hands to the touch region to allow for user input. Note that the user's hands do not occlude the display. The system may render a representation of the user's hand on the display in order for the user to interact with elements on the display screen.
Abstract:
A dynamic projected user interface device is disclosed, that includes a projector, a projection controller, and an imaging sensor. The projection controller is configured to receive instructions from a computing device, and to provide display images via the projector onto display surfaces. The display images are indicative of a first set of input controls when the computing device is in a first operating context, and a second set of input controls when the computing device is in a second operating context. The imaging sensor is configured to optically detect physical contacts with the one or more display surfaces.
Abstract:
The subject disclosure is directed towards detecting symbolic activity within a given environment using a context-dependent grammar. In response to receiving sets of input data corresponding to one or more input modalities, a context-aware interactive system processes a model associated with interpreting the symbolic activity using context data for the given environment. Based on the model, related sets of input data are determined. The context-aware interactive system uses the input data to interpret user intent with respect to the input and thereby, identify one or more commands for a target output mechanism.
Abstract:
A system is described herein which receives internal-assessed (IA) movement information from a mobile device. The system also receives external-assessed (EA) movement information from at least one monitoring system which captures a scene containing the mobile device. The system then compares the IA movement information with the EA movement information with respect to each candidate object in the scene. If the IA movement information matches the EA movement information for a particular candidate object, the system concludes that the candidate object is associated with the mobile device. For example, the object may correspond to a hand that holds the mobile device. The system can use the correlation results produced in the above-indicated manner to perform various environment-specific actions.