摘要:
Innovations in the areas of hash table construction and availability checking reduce computational complexity of hash-based block matching. For example, some of the innovations speed up the process of constructing a hash table or reduce the size of a hash table. This can speed up and reduce memory usage for hash-based block matching within a picture (for block vector estimation) or between different pictures (for motion estimation). Other innovations relate to availability checking during block vector estimation that uses a hash table.
摘要:
Techniques for coding and deriving (e.g., determining) one or more coded-block-flags associated with video content are described herein. A coded-block-flag of a last node may be determined when coded-block-flags of preceding nodes are determined to be a particular value and when a predetermined condition is satisfied. In some instances, the predetermined condition may be satisfied when log2(size of current transform unit) is less than log2(size of maximum transform unit) or log2(size of current coding unit) is less than or equal to log2(size of maximum transform unit)+1. The preceding nodes may be nodes that precede the last node on a particular level in a residual tree.
摘要:
Innovations in adaptive encoding and decoding for units of a video sequence can improve coding efficiency when switching between color spaces during encoding and decoding. For example, some of the innovations relate to adjustment of quantization or scaling when an encoder switches color spaces between units within a video sequence during encoding. Other innovations relate to adjustment of inverse quantization or scaling when a decoder switches color spaces between units within a video sequence during decoding.
摘要:
Innovations in adaptive encoding and decoding for units of a video sequence can improve coding efficiency. For example, some of the innovations relate to encoding/decoding that includes adaptive switching of color spaces between units within a video sequence. Other innovations relate encoding/decoding that includes adaptive switching of color sampling rates between units within a video sequence. Still other innovations relate encoding/decoding that includes adaptive switching of bit depths between units within a video sequence.
摘要:
Innovations in encoder-side decisions for coding of screen content video or other video can speed up encoding in various ways. For example, some of the innovations relate to ways to speed up motion estimation by identifying appropriate starting points for the motion estimation in different reference pictures. Many of the encoder-side decisions speed up encoding by terminating encoding for a block or skipping the evaluation of certain modes or options when a condition is satisfied. For example, some of the innovations relate to ways to speed up encoding when hash-based block matching is used. Still other innovations relate to ways to identify when certain intra-picture prediction modes should or should not be evaluated during encoding. Other innovations relate to other aspects of encoding.
摘要:
Innovations in adaptive encoding and decoding for units of a video sequence can improve coding efficiency. For example, some of the innovations relate to encoding/decoding that includes adaptive switching of color spaces between units within a video sequence. Other innovations relate encoding/decoding that includes adaptive switching of color sampling rates between units within a video sequence. Still other innovations relate encoding/decoding that includes adaptive switching of bit depths between units within a video sequence.
摘要:
According to implementations of the present disclosure, there is provided a context-based image coding solution. According to the solution, a reference image of a target image is obtained. A contextual feature representation is extracted from the reference image, the contextual feature representation characterizing contextual information associated with the target image. Conditional encoding or conditional decoding is performed on the target image based on the contextual feature representation. In this way, the enhancement of the performance is achieved in terms of the reconstruction quality and the compression efficiency.
摘要:
Innovations in encoding or decoding when switching color spaces are presented. For example, some of the innovations relate to signaling of control information for adaptive color space transformation (“ACT”). Other innovations relate to ACT operations. These innovations can improve coding efficiency when switching between color spaces during encoding and decoding.
摘要:
Innovations in adaptive encoding and decoding for units of a video sequence can improve coding efficiency when switching between color spaces during encoding and decoding. For example, some of the innovations relate to adjustment of quantization or scaling when an encoder switches color spaces between units within a video sequence during encoding. Other innovations relate to adjustment of inverse quantization or scaling when a decoder switches color spaces between units within a video sequence during decoding.
摘要:
Disclosed herein are representative embodiments of generating representative motion information that can be used during processing of a video frame. In one exemplary embodiment disclosed herein, a reference frame comprising a group of blocks is processed, and motion information for the group of blocks is compressed at least by buffering representative motion-vector information and representative reference-frame index information for the group of blocks. The representative reference-frame index information comprises reference-frame index information of a representative block of the group of blocks, and the representative reference-frame index information represents reference-frame index information for the group of blocks during processing of a current frame.