Abstract:
A method for imaging an object by means of photoneutron transmission is provided, which comprises the steps of: collimating the photoneutron rays passing through the object by means of a neutron collimator so as to determine the position information of the photoneutron rays based on the position of the neutron collimator; detecting the collimated photoneutron ray beams by means of a detector module, wherein the detector module includes a neutron moderator and at least one thermal neutron detector located within the neutron moderator, wherein the neutron moderator converts the photoneutrons into thermal neutrons, and wherein the thermal neutron detector measures the thermal neutrons so as to obtain attenuation information of the photoneutron ray beams upon passing through the object; and integrating the position information and the attenuation information so as to form an image of the corresponding part of the object. The method determines the position of the photoneutron rays based on the position of a neutron collimator, so as to overcome the problem of incapability of imaging due to loss of position information of the photoneutrons during moderation thereof. The method also images the object by arranging detector module arrays.
Abstract:
Power conversion systems and integrated multi-phase chokes providing high common mode to differential mode choke inductance ratios with circular and triangular shapes for concurrent differential filtering and common-mode voltage blocking in motor drives and other power conversion applications.
Abstract:
The present invention proposes a circuit for converting DC into AC pulsed voltage. The circuit comprises two or four controllable semiconductor switches as well as a corresponding controller unit. The controller unit controls the opening and closing of the two or four controllable semiconductor switches using a preset control mode. When the circuit is used as the driver circuit of a capacitive load such as a DBD lamp, the luminous efficiency of the DBD lamp is improved.
Abstract:
Power conversion apparatus and methods are presented for providing electrical power to a grid or other load in which a synchronous machine is driven by a wind turbine or other prime mover to provide generator power to a switching type current source converter (CSC), with a current source rectifier (CSR) of the CSC being switched to provide d-axis control of the synchronous machine current based on grid power factor feedback, and with a current source inverter (CSI) of the CSC being switched to provide leading firing angle control and selective employment of dumping resists to dissipate excess generator energy in a fault mode when a grid voltage drops below a predetermined level.
Abstract:
A first electro-optic display comprises first and second substrates, and an adhesive layer and a layer of electro-optic material disposed between the first and second substrates, the adhesive layer comprising a mixture of a polymeric adhesive material and a hydroxyl containing polymer having a number average molecular weight not greater than about 5000. A second electro-optic display is similar to the first but has an adhesive layer comprising a thermally-activated cross-linking agent to reduce void growth when the display is subjected to temperature changes. A third electro-optic display, intended for writing with a stylus or similar instrument, is produced by forming a layer of an electro-optic material on an electrode; depositing a substantially solvent-free polymerizable liquid material over the electro-optic material; and polymerizing the polymerizable liquid material.
Abstract:
Current source converter (CSC) based wind energy power conversion systems (WECS) and methods are presented in which a unified DC link current control scheme is employed to facilitate grid fault ride-through conditions, with a multiple-mode converter control system that combines the power flow control capabilities of the generator-side and grid-side converters, in which transitions between normal operation and fault condition are achieved automatically by monitoring the grid voltage without the need for, or with partial additional ride-through components.
Abstract:
The disclosed is a piezoelectric phase shifter, which comprises: an input part for inputting input voltages; an output part for outputting output voltages; and a control part for tuning phase difference between the output and input voltages, which are made of a piezoelectric ceramic plate. Further, the input, output and control parts are separated by insulting gaps respectively. The wide phase shift range and good ability to manage high power and relatively high energy transmission efficiency may be obtained by the disclosure.
Abstract:
The disclosed is package structure for a piezoelectric transformer, which comprises: a shell for supporting the piezoelectric transformer at its node plane; a plurality of electrical connection frames which are fixed on the shell for connecting with electrodes of the piezoelectric transformer and conducting heat from piezoelectric transformer by connection points arranging along the electrical connection frame; and a plurality of connection pins deposited on the electrical connection frames for connecting to the outside circuit. Further, the shell has a wedge structure part which fixes the piezoelectric transformer at its node plane. Correspondingly, a package method for a piezoelectric transformer is also disclosed. Thus, the structure and package method allow a piezoelectric transformer to vibrate freely and have good heat management.
Abstract:
The present invention provides isolated homogeneous polyfunctionalized proteins (e.g., erythropoietin), isolated glycopeptides, and a method for preparing polyfunctionalized peptides and/or proteins via cysteine-free native chemical ligation. In certain embodiments, the invention provides an isolated homogeneous polyfunctionalized protein having the structure (I). In certain other embodiments, the invention provides an isolated glycopeptide having Formula (II). In certain other embodiments, the inventive method is a method for preparing a polyfunctionalized peptide comprising a peptidic backbone made up of four or more amino acids, wherein two or more non-adjacent amino acids are independently substituted with a moiety having the structure (III)-LH. wherein A and L1 are as defined herein.
Abstract:
There is provided herein cross-linked, phosphorescent micro- and nanoparticles and applications of those particles. The invention uses halogen-containing polymers and co-polymers (HCPs) as an encapsulation matrix for organic and organometallic phosphorescent compounds to form micro- or nanoparticles. The phosphorescence of these encapsulated phosphorescent particles is substantially unaffected by phosphorescence quenchers such as oxygen and water molecules at ambient conditions. The invention provides methods of making cross-linked phosphorescent particles. HCPs may be directly cross-linked through linking moieties that are a part of the polymer, or cross-linked through other separate bridging or cross-linking materials Cross-linked particles are more stable than the non-cross-linked counterparts and more resistant to temperature, surfactants, and organic solvents.