Abstract:
A touch panel includes a first electrode plate, a second electrode plate, and a continuous transparent insulating layer. The first electrode plate includes a first conductive layer. The second electrode plate includes a second conductive layer opposite to and spaced from the first conductive layer. The continuous transparent insulating layer is located between the first conductive layer and the second conductive layer. At least one of first conductive layer and the second conductive layer includes a carbon nanotube structure.
Abstract:
A wall mounted electric heater includes a substrate, a heat insulated sheet, a heating element, at least two electrodes and an enclosure. The heat insulated sheet is disposed on a surface of the substrate. The heating element is disposed on the heat insulated sheet. The heating element includes a carbon nanotube layer structure. The at least two electrodes are electrically connected with the heating element. The enclosure fixes the substrate, the heat insulated sheet and the heating element therein.
Abstract:
The present invention relates to a thermoacoustic device that includes an acoustic element. The acoustic element includes a substrate, a plurality of microspaces, and a metal film. The metal film is located above the substrate. A plurality of microspaces is defined between the substrate and the metal film. The metal film is partially suspended above the substrate.
Abstract:
A method for fabricating a conductive plate includes providing a base substrate and a conductive material that includes a plurality of nanounits. The conductive material is placed on the base substrate, where a portion of the conductive material placed on the base substrate is removed.
Abstract:
A room heating device includes a supporting body, a thermoacoustic element, a first electrode and a second electrode. The thermoacoustic element is disposed on the supporting body. The first electrode and the second electrode are connected to the thermoacoustic element. The first electrode is spaced apart from the second electrode.
Abstract:
A thermoacoustic module includes a substrate, at least one first electrode and at least one second electrode located on the substrate, a cover board spaced from the substrate, and a sound wave generator. The cover board defines a plurality of openings. The sound wave generator is located between the cover board and the substrate. The sound wave generator is electrically connected to the at least one first electrode and the at least one second electrode. The sound wave generator is capable of causing a thermoacoustic effect.
Abstract:
A field emission light source includes a substrate, a cathode conductive layer, a plurality of electron emitters, a transparent substrate, an anode layer and a fluorescent layer. The cathode conductive layer is formed on the substrate. The electron emitters are disposed on the cathode conductive layer. The transparent substrate is spaced from the cathode conductive layer. The anode layer is formed on the transparent substrate facing the electron emitters and includes a carbon nanotube film structure having carbon nanotubes arranged in a preferred orientation. The fluorescent layer is formed on the anode layer facing the electron emitters.
Abstract:
An electrode lead of a pacemaker includes at least one lead wire. The at least one lead wire includes at least one conductive core, a first insulating layer coated on an outer surface of the at least one conductive core, at least one carbon nanotube yarn spirally wound on an outer surface of the first insulating layer, and a second insulating layer coated on the surface of the at least one carbon nanotube yarn. One end of the at least one conductive core protrudes from the first insulating layer to form a naked portion. The at least one carbon nanotube yarn includes a number of carbon nanotubes joined end to end by van der Waals attractive forces. A pacemaker includes a pulse generator and the electrode lead electrically connected with the pulse generator.
Abstract:
An electrode lead of a pacemaker includes at least one lead wire including at least one composite conductive core. The at least one composite conductive core includes at least one conductive core and at least one carbon nanotube yarn spirally wound on an outer surface of the at least one conductive core. The at least one carbon nanotube yarn includes a number of carbon nanotubes joined end to end by van der Waals attractive forces. The pacemaker includes a pulse generator and the electrode lead electrically connected to the pulse generator.
Abstract:
An electrode lead of a pacemaker includes a lead wire. The lead wire includes at least one sub-lead wire and an electrode head. The sub-lead wire includes a core wire structure, a first insulating layer and a carbon nanotube composite structure. The first insulating layer coats on an outer surface of the core wire structure. The carbon nanotube composite structure is wound around an outer surface of the core wire structure. The electrode head is disposed on an end of the lead wire and electrically connected with the core wire structure of the sub-lead wire. The pacemaker includes a pulse generator and the electrode lead electrically connected to the pulse generator.