Abstract:
A ventricularly implantable medical device that includes a sensing module that is configured to detect an atrial fiducial and identify an atrial contraction based at least on part on the detected atrial fiducial. Control circuitry in the implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart based at least in part on the identified atrial contraction, and can automatically switch or revert the ventricular pacing therapies on the fly.
Abstract:
An implantable leadless cardiac pacing device including a housing having a proximal end and a distal end, an electrode positioned proximate the distal end of the housing configured to be positioned adjacent cardiac tissue, and a tissue anchoring member extending from the distal end of the housing configured to secure the housing to cardiac tissue. The device further includes a tissue engagement verification feature configured to provide feedback upon engagement of the tissue anchoring member in cardiac tissue.
Abstract:
An implantable medical device (IMD) may be deployed within a patient's right atrium at a location near a right atrial appendage of the patient's heart in order to pace the patient's heart and/or to sense electrical activity within the patient's heart. In some cases, an IMD may be implanted within the right atrial appendage. The IMD may include an expandable anchoring mechanism configured to secure the IMD in place.
Abstract:
Implantable medical devices such as leadless cardiac pacemakers (LCP) may be configured to be delivered to a target location within the heart over a guide wire. In some cases, using a guide wire for delivery facilitates placement of devices in regions not otherwise easily reached. An LCP may include a housing and a wire lumen disposed relative to the housing. The wire lumen may be configured to allow the LCP to slide over a guide wire. In some cases, the guide wire may include a guide wire electrode that may be used to test potential implantation sites.
Abstract:
An implantable leadless cardiac pacing device and associated retrieval features. The implantable device includes a docking member extending from the proximal end of the housing of the implantable device including a covering surrounding at least a portion of the docking member configured to facilitate retrieval of the implantable leadless cardiac pacing device.
Abstract:
Systems, methods, and devices for detecting or confirming fibrillation are discussed. In one example, a method for detecting a cardiac arrhythmia of a patients' heart comprises receiving, by a leadless cardiac pacemaker fixed in the patients' heart, an indication from a remote device that a cardiac arrhythmia is detected, monitoring by the leadless cardiac pacemaker a signal generated by a sensor that is located within the patients' heart, and based at least in part on the monitored signal, confirming whether a cardiac arrhythmia is occurring or not. In some embodiments, the method may further comprise, if a cardiac arrhythmia is confirmed, delivering a therapy to treat the cardiac arrhythmia.
Abstract:
Systems, methods, and devices for determining occurrences of a tamponade condition are disclosed. One exemplary method includes monitoring an accelerometer signal of a leadless cardiac pacemaker attached to a heart wall, determining if a tamponade condition of the patient's heart is indicated based at least in part on the monitored accelerometer signal, and in response to determining that the tamponade condition is indicated, providing a notification of the tamponade condition for use by a physician to take corrective action.
Abstract:
Systems, devices, and methods for adjusting functionality of an implantable medical device based on posture are disclosed. In some instances, a method for operating a leadless cardiac pacemaker implanted into a patient, where the patient has two or more predefined behavioral states, may include detecting a change in the behavioral state of the patient, and in response, changing a sampling rate of a sensor signal generated by a sensor of the leadless cardiac pacemaker. In some embodiments, the method may further include using the sampled sensor signal to determine an updated pacing rate of the leadless cardiac pacemaker and providing pacing to the patient at the updated pacing rate.
Abstract:
Systems, methods, and devices for detecting dislodgment of an implantable device are disclosed. In one example, a method for determining a dislodgement status may comprise collecting, by the implantable device operating in a first operating mode, a first number of accelerometer signal samples during a cardiac cycle of the heart and using the first number of accelerometer signal samples to determine a first patient parameter and collecting, by the implantable device operating in a second operating mode, a second number of accelerometer signal samples during a cardiac cycle of the heart and using the second number of accelerometer signal samples to determine a dislodgment status of the implantable device, wherein the first number is smaller than the second number. In some further embodiments, the method may further include providing a notification of the dislodgment status to a remote device that is remote from the implantable medical device.