REPUTATION DATA FOR ENTITIES AND DATA PROCESSING
    74.
    发明申请
    REPUTATION DATA FOR ENTITIES AND DATA PROCESSING 审中-公开
    实体和数据处理的报告数据

    公开(公告)号:US20080005223A1

    公开(公告)日:2008-01-03

    申请号:US11427315

    申请日:2006-06-28

    IPC分类号: G06F15/173 G06F15/18

    CPC分类号: G06F16/951

    摘要: Architecture for creation and processing of reputation data for entities such as websites, users, hardware, software, documents, objects and facts. Reputation data can be utilized in connection with web-based searching such that the reputation of websites provides a metric in connection with ranking of search results as well as enhancing delivery of meaningful and accurate information to users. A computer-implemented system is provided that comprises an aggregation component for receiving and aggregating information relating to an entity (e.g., user, website, data, hardware, software), and a reputation engine that employs the aggregated information to generate reputation data therefrom. Other aspects allow for management of the data, hardware and software based on the reputation data, and access to such entities.

    摘要翻译: 用于创建和处理网站,用户,硬件,软件,文档,对象和事实等实体的声誉数据的架构。 信誉数据可以与基于网络的搜索结合使用,使得网站的信誉提供与搜索结果的排名相关的度量,并且增强对用户的有意义和准确的信息的传递。 提供了一种计算机实现的系统,其包括用于接收和聚合与实体(例如,用户,网站,数据,硬件,软件)相关的信息的聚合组件,以及使用聚合信息从其生成信誉数据的信誉引擎。 其他方面允许基于信誉数据管理数据,硬件和软件以及访问这些实体。

    DATA MANAGEMENT IN SOCIAL NETWORKS
    75.
    发明申请
    DATA MANAGEMENT IN SOCIAL NETWORKS 有权
    社会网络中的数据管理

    公开(公告)号:US20080005073A1

    公开(公告)日:2008-01-03

    申请号:US11427291

    申请日:2006-06-28

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30867 G06Q50/01

    摘要: Architecture that monitors interaction data (e.g., search queries, query results and click-through rates), and provides users with links to other users that fall into similar categories with respect to the foregoing monitored activities (e.g., providing links to individuals and groups that share common interests and/or profiles). A search engine can be interactively coupled with one or more social networks, and that maps individuals and/or groups within respective social networks to subsets of categories associated with searches. A database stores mapped information which can be continuously updated and reorganized as links within the system mapping become stronger or weaker. The architecture can comprise a social network system that includes a database for mapping search-related information to an entity of a social network, and a search component for processing a search query for search results and returning a link to an entity of a social network based on the search query.

    摘要翻译: 监视交互数据(例如搜索查询,查询结果和点击率)的架构,并向用户提供与上述受监视活动相类似的类别的其他用户的链接(例如,提供与个人和组的链接 分享共同的兴趣和/或简介)。 搜索引擎可以与一个或多个社交网络交互地耦合,并且将各个社交网络内的个人和/或组映射到与搜索相关联的类别的子集。 数据库存储可以不断更新和重新组织的映射信息,因为系统映射中的链接变得更强或更弱。 该架构可以包括社交网络系统,其包括用于将搜索相关信息映射到社交网络的实体的数据库,以及用于处理搜索结果的搜索查询并返回到基于社交网络的实体的链接的搜索组件 在搜索查询上。

    Extracting classifying data in music from an audio bitstream
    77.
    发明授权
    Extracting classifying data in music from an audio bitstream 失效
    从音频比特流中提取音乐中的分类数据

    公开(公告)号:US07295977B2

    公开(公告)日:2007-11-13

    申请号:US09939954

    申请日:2001-08-27

    IPC分类号: G10L15/16 G10H7/10

    CPC分类号: G10L17/02 G10L17/26 G10L25/30

    摘要: The method of the present invention utilizes machine-learning techniques, particularly Support Vector Machines in combination with a neural network, to process a unique machine-learning enabled representation of the audio bitstream. Using this method, a classifying machine is able to autonomously detect characteristics of a piece of music, such as the artist or genre, and classify it accordingly. The method includes transforming digital time-domain representation of music into a frequency-domain representation, then dividing that frequency data into time slices, and compressing it into frequency bands to form multiple learning representations of each song. The learning representations that result are processed by a group of Support Vector Machines, then by a neural network, both previously trained to distinguish among a given set of characteristics, to determine the classification.

    摘要翻译: 本发明的方法利用机器学习技术,特别是与神经网络相结合的支持向量机来处理独特的机器学习使能的音频比特流表示。 使用这种方法,分类机能够自主地检测诸如艺术家或流派之类的音乐的特征,并相应地对其进行分类。 该方法包括将音乐的数字时域表示变换为频域表示,然后将该频率数据划分为时间片,并将其压缩为频带,以形成每首歌曲的多个学习表示。 结果的学习表示由一组支持向量机处理,然后由神经网络处理,两者都被训练以区分给定的一组特征,以确定分类。