摘要:
Calculation of a present air-fuel ratio correction coefficient correction value &Dgr;FAF (i) is based on a control parameter calculated by an ECU, a change in air-fuel ratio detected by an air-fuel ratio sensor, a deviation of an actual air-fuel ratio from a target air-fuel ratio and an immediately preceding air-fuel ratio correction coefficient correction value &Dgr;FAF (i−1) Then, a present air-fuel ratio correction coefficient FAF (i) is found by adding the present air-fuel ratio correction coefficient correction value &Dgr;FAF (i) to an immediately preceding air-fuel ratio correction coefficient FAF (i−1). As a result, the air-fuel ratio correction coefficients is not be thrown into confusion and no phenomenon of the air-fuel ratio being thrown into confusion occurs even if the control parameter is changed in accordance with operating conditions of the engine.
摘要:
An emission control apparatus for an engine has a plurality of catalysts disposed in series in an exhaust passage. An HC absorbent catalyst is utilized for at least one of the catalysts. An ECU controls an A/F ratio in an upstream side of the HC absorbent catalyst at a target value. The target value is corrected to a leaner value when the HC absorbent catalyst is in a desorbing condition. The leaner value is leaner than the target value during the HC absorbent catalyst is in an absorbing condition or an activated condition. The leaner atmosphere provides sufficient of oxygen to purify desorbed HC from the HC absorbent catalyst itself.
摘要:
An upstream catalyst and a downstream catalyst are disposed in series in an exhaust pipe, and first through third sensors for detecting the air-fuel ratio or an adsorption amount of hazardous components on the rich/lean side of exhaust gases are disposed on the upstream and downstream sides of the upstream catalyst and the downstream side of the downstream catalyst, respectively. An ECU for controlling an engine controls the air-fuel ratio so that when the adsorption amount of the hazardous components on the rich side of the downstream catalyst is large, that of the hazardous components on the lean side of the upstream catalyst is large. Similarly, the ECU controls the air-fuel ratio so that when the adsorption amount of the hazardous components on the lean side of the downstream catalyst is large, that of the hazardous components on the rich side of the upstream catalyst is large.
摘要:
An air-fuel ratio feedback control has an air-fuel ratio sensor and an oxygen sensor at an upstream side and a downstream side of a catalytic converter. A CPU feedback controls an air-fuel ratio detected by the air-fuel ratio sensor to a target air-fuel ratio, with a feedback gain being varied with an output of the oxygen sensor. The CPU further estimates an air-fuel ratio response speed based on a ratio between an exhaust gas flow amount and a capacity of the catalyst and determines a rate of deterioration of the catalyst. The CPU varies further the feedback gain based on the estimated response speed and the determined rate of deterioration.
摘要:
An air/fuel ratio control system controls the supply of fuel to an internal combustion engine to achieve a target air/fuel ratio, based on the output of an air/fuel ratio sensor. The system may determine whether there is an abnormality in the air/fuel ratio sensor based on a comparison between a change of an air/fuel ratio correction coefficient, used to drive the air/fuel ratio to the target value, and a change of the target air/fuel ratio if the target air/fuel ratio has sharply changed. Alternatively, the diagnosis operation may be performed based on a comparison between a total air/fuel ratio correction amount and a change of the air/fuel ratio detected by the air/fuel ratio sensor, a phase difference calculation between peaks of the air/fuel ratio or the air/fuel ratio correction coefficient, or by accumulating the differences between the air/fuel ratio and the target air/fuel ratio, and the differences between the air/fuel ratio correction coefficient and a reference value, and comparing the accumulated values. In addition, the system may detect a sensor abnormality based on the deviation in phase of the air/fuel ratio from the air/fuel ratio correction coefficient. These diagnosis operations can precisely and easily detect the occurrence of an abnormality in the air/fuel ratio sensor. As a result, the air/fuel ratio control system will not use an imprecise output from the sensor for air/fuel ratio control, thus achieving highly precise and highly reliable air/fuel ratio control.
摘要:
A sensing element of an oxygen sensor is controlled to keep a target impedance for maintaining activation temperature of the oxygen sensor. As the sensing element deteriorates, its internal impedance increases and power supply to a heater for heating the sensing element increases. The oxygen sensor temperature rises excessively above an activation temperature. To restrict excessive temperature rise, the target impedance is altered when the supply power to the heater exceeds a predetermined reference. The target impedance may be increased with increase in the power supply to the heater. Alternatively, the heater supply power is limited to a predetermined maximum for restricting excessive temperature rise.
摘要:
The fuel ratio control system controls the supply of fuel to an internal combustion engine to achieve a target air-fuel ratio, based on the output of an air-fuel ratio sensor. The system may determine whether there is an abnormality in the air-fuel ratio sensor based on a comparison between a change of an air-fuel ratio correction coefficient, used to drive the air-fuel ratio to the target value, and a change of the target air-fuel ratio if the target air-fuel ratio has sharply changed. Alternatively, the diagnosis operation may be performed based on a comparison between a total air-fuel ratio correction amount and a change of the air-fuel ratio detected by the air-fuel ratio sensor, a phase difference calculation between peaks of the air-fuel ratio or the air-fuel ratio correction coefficent, or by accumulating the differences between the air-fuel ratio and the target air-fuel ratio, and the differences between the air-fuel ratio correction coefficient and a reference value, and comparing the accumulated values. In addition, the system may detect a sensor abnormality based on the deviation in phase of the air-fuel ratio from the air-fuel ratio correction coefficient. These system may also detect sensor abnormality on the basis of the behavior of the air-fuel ratio during transitional engine operation. As a result, the air-fuel ratio control system will not use an imprecise output from the sensor for air-fuel ratio control, thus achieving highly precise and highly reliable air-fuel ratio control.
摘要:
An exhaust pipe of an internal combustion engine is equipped with a three-way catalytic converter. Provided upstream and downstream the converter are an A/F sensor and a downstream O2 sensor, respectively. A CPU executes air-fuel feedback control according to the readings from the A/F sensor. When the period of air-fuel ratio inversion by the downstream O2 sensor has exceeded a predetermined time, the CPU determines that the three-way catalytic converter is activated. At that point, the CPU estimates the quantity of heat required from the start-up of the engine up to catalyst activation. The quantity of heat is obtained by accumulating the intake air quantity from the start of the engine up to catalyst activation (i.e., accumulated intake air quantity). Given the accumulated quantity of heat calculated, the CPU determines accordingly whether the three-way catalytic converter has deteriorated.
摘要:
A self-diagnostic apparatus of an air-fuel ratio control system of an internal combustion engine performs processes of starting the diagnostic process as the fuel-cut is started, reading and storing a sensor output at the start of the fuel-cut and counting an elapsed time after the start of the fuel-cut by actuating a timer, reading a time until when the sensor output rises from the start of the fuel-cut from the count value of the timer, calculating a rate of change of the sensor output and comparing the calculated rate of change with an abnormality determining value. When the rate of change is large, the response characteristic of the sensor is normal. When it is small, the response characteristic of the sensor is abnormal (degraded), so that the abnormality of the sensor is stored in a memory and an alarm lamp is lighted to inform a driver of the abnormality of the sensor.
摘要:
There is disclosed a self-diagnosis apparatus in which when detecting a supply abnormally (i.e., failure to lead fuel evaporation gas into an intake passage), the abnormality can be accurately detected, taking into consideration variations in the fuel gas density (variations in the ambient temperature, variations in the volatility of the fuel, and etc.) due to the residual air in a fuel tank. In the apparatus, the amount of flow of the gas from the fuel tank to a canister can be detected, and a control circuit controls a purge valve to close a fuel gas discharge passage, and in this condition the control circuit detects the amount of flow of the gas from the fuel tank to the canister. When this flow amount exceeds a set value, the control circuit controls the purge valve to close and open the discharge passage, and judges in accordance with a change in an air-fuel ratio detected at this time by an O.sub.2 sensor whether or not any abnormality exists. If the control circuit judges by this judgment that there exists abnormality, the set value of the gas flow amount is set to a value greater than said set value, and the abnormality judgment is again effected. Then, if this judgment result still indicates that abnormality exists, a warning lamp is turned on to give warning.