Abstract:
According to a method herein, a first side of a substrate is implanted with a first material to change a crystalline structure of the first side of the substrate from a first crystalline state to a second crystalline state, after the first material is implanted. A second material is deposited on the first side of the substrate, after the first material is implanted. A first side of an insulator layer is bonded to the second material on the first side of the substrate. Integrated circuit devices are formed on a second side of the insulator layer, opposite the first side of the insulator layer, after the insulator layer is bonded to the second material. The integrated circuit devices are thermally annealed. The first material maintains the second crystalline state of the first side of the substrate during the annealing.
Abstract:
A silicon device includes an active silicon layer, a buried oxide (BOX) layer beneath the active silicon layer and a high-resistivity silicon layer beneath the BOX layer. The device also includes a harmonic suppression layer at a boundary of the BOX layer and the high-resistivity silicon layer.
Abstract:
A silicon device includes an active silicon layer, a buried oxide (BOX) layer beneath the active silicon layer and a high-resistivity silicon layer beneath the BOX layer. The device also includes a harmonic suppression layer at a boundary of the BOX layer and the high-resistivity silicon layer.
Abstract:
A semiconductor structure and a method of forming the same. In one embodiment, a method of forming a silicon-on-insulator (SOI) wafer substrate includes: providing a handle substrate; forming a high resistivity material layer over the handle substrate, the high resistivity material layer including one of an amorphous silicon carbide (SiC), a polycrystalline SiC, an amorphous diamond, or a polycrystalline diamond; forming an insulator layer over the high resistivity material layer; and bonding a donor wafer to a top surface of the insulator layer to form the SOI wafer substrate.