Abstract:
According to one embodiment, a display device including, a substrate including a first area including a display area, a second area including a mount area, and a third area located between the first area and the second area, a first inorganic insulating layer provided on the substrate in the first area and the second area, a line provided on the first inorganic insulating layer and extending across the first area, the second area, and the third area, and, a second inorganic insulating layer provided on the line, the second inorganic insulating layer extending to an area overlaid on at least the first inorganic insulating layer.
Abstract:
In a liquid crystal display device, a common electrode is formed on an organic passivation film, an interlayer insulating film is formed on the common electrode, a pixel electrode with a slit is formed on the interlayer insulating film, and a through hole is formed in the organic passivation film and the interlayer insulating film, so that the pixel electrode is connected to a source electrode of a TFT through the through hole. Further, the taper angle around the upper base of the through hole is smaller than the taper angle around the lower base. Thus, the alignment film material can easily flow into the through hole when the diameter of the through hole is reduced to connect the pixel and source electrodes, preventing display defects such as uneven brightness due to the absence of the alignment film or due to the alignment film irregularity around the through hole.
Abstract:
According to one embodiment, a display device includes an insulating substrate including a first surface, and a second surface opposite to the first surface, a circuit board mounted on the first surface, a supporting member adhered to the insulating substrate on the second surface, and an antistatic layer located between the insulating substrate and the supporting member.
Abstract:
According to one embodiment, a display device includes a display panel including a first area including a display area, a second area including a terminal portion and a third area located between the first area and the second area and a cover member adhered to the first area via an adhesive layer, and the display panel is bent in the third area so that the first area and the second area oppose each other on a side opposite to the cover member, and the third area is adhered to the cover member by a first resin.
Abstract:
In a liquid crystal display device, a common electrode is formed on an organic passivation film, an interlayer insulating film is formed on the common electrode, a pixel electrode with a slit is formed on the interlayer insulating film, and a through hole is formed in the organic passivation film and the interlayer insulating film, so that the pixel electrode is connected to a source electrode of a TFT through the through hole. Further, the taper angle around the upper base of the through hole is smaller than the taper angle around the lower base. Thus, the alignment film material can easily flow into the through hole when the diameter of the through hole is reduced to connect the pixel and source electrodes, preventing display defects such as uneven brightness due to the absence of the alignment film or due to the alignment film irregularity around the through hole.
Abstract:
According to one embodiment, a display device includes an insulating substrate having a display area, a pad area and a bend area, wiring lines, a first protective film and a second protective film. The wiring lines are elongated from the display area to the pad area. The first protective film is located on the insulating substrate and the wiring lines. The second protective film is located on the first protective film and is formed of an organic insulating material different from that of the first protective film.
Abstract:
In a liquid crystal display device, a common electrode is formed on an organic passivation film, an interlayer insulating film is formed on the common electrode, a pixel electrode with a slit is formed on the interlayer insulating film, and a through hole is formed in the organic passivation film and the interlayer insulating film, so that the pixel electrode is connected to a source electrode of a TFT through the through hole. Further, the taper angle around the upper base of the through hole is smaller than the taper angle around the lower base. Thus, the alignment film material can easily flow into the through hole when the diameter of the through hole is reduced to connect the pixel and source electrodes, preventing display defects such as uneven brightness due to the absence of the alignment film or due to the alignment film irregularity around the through hole.
Abstract:
In a liquid crystal display device, a common electrode is formed on an organic passivation film, an interlayer insulating film is formed on the common electrode, a pixel electrode with a slit is formed on the interlayer insulating film, and a through hole is formed in the organic passivation film and the interlayer insulating film, so that the pixel electrode is connected to a source electrode of a TFT through the through hole. Further, the taper angle around the upper base of the through hole is smaller than the taper angle around the lower base. Thus, the alignment film material can easily flow into the through hole when the diameter of the through hole is reduced to connect the pixel and source electrodes, preventing display defects such as uneven brightness due to the absence of the alignment film or due to the alignment film irregularity around the through hole.
Abstract:
Various layer separation states are generated by the combination of a polyamide acid ester and a polyamide acid and a long residual image characteristic cannot be further improved merely by combining them. A liquid crystal display device comprises a substrate, a liquid crystal layer, and an orientation film placed between the substrate and the liquid crystal layer. The orientation film comprises a polyimide precursor having two or more components. In the polyimide precursor, an octanol-water partition coefficient is defined as log P and the difference in log P (Δ log P) between the two components having most distant log Ps is set so as to fall within a prescribed range.
Abstract:
According to one embodiment, a liquid crystal display panel includes a first substrate, a second substrate, a sealant and a liquid crystal layer. The first substrate includes a switching element and a pixel electrode. The second substrate includes a first organic insulating film in which a first trench portion is formed, a projection formed beneath the first organic insulating film, and a first barrier layer. The first barrier layer is formed continuously from an inside of the first trench portion to under the projection.