摘要:
The present invention provides a hologram recording material and a hologram recording medium, suitable for volume hologram recording, that are excellent in multiple recording characteristics and stability over time in holographic memory recording using a blue laser as well as a green laser. A hologram recording material comprising at least metal compound fine particles and a photopolymerizable compound, wherein the metal compound fine particles comprise organometallic fine particles which contain a metal atom, an organic group, and an oxygen atom, have a direct bond between the metal atom and a carbon atom in the organic group (a metal-carbon bond), and have a bond between the metal atoms through the oxygen atom (a metal-oxygen-metal bond); and the metal compound fine particles are not crosslinked with each other. A hologram recording medium (11) having the hologram recording material layer (21).
摘要:
The present invention provides a hologram recording material which is suitable for volume hologram record and can attain high refractive index change, flexibility, high sensitivity, low scattering, environment resistance, that is, storage stability, durability, low dimensional change (low shrinkage) and high multiplicity in holographic memory record using not only a green laser but also a blue laser. A hologram recording material comprising: a metal oxide matrix; and a photopolymerizable compound which has at least one (meth)acrylamide group as a photo-reactive group, and has a polyalkylene glycol unit represented by the following formula: —(RO)n— wherein R represents a lower alkylene group, and n represents the number of repeating units of alkylene oxide.
摘要:
The present invention provides a process for producing a titanium-containing metal oxide the coloration of which is decreased; a hologram recording material suitable for holographic memory recording using a blue laser, wherein a titanium-containing metal oxide the coloration of which is decreased is used as a metal oxide matrix; a process for producing the same; and a hologram recording medium. A process for producing a metal oxide comprising at least Ti as a metal element, the process comprising: providing an alkoxide compound of Ti to which a glycol other than any geminal diol and any vicinal diol is coordinated; hydrolyzing the alkoxide compound of Ti to which the glycol is coordinated, thereby yielding a precursor of a metal oxide; and advancing polycondensation reaction of the metal oxide precursor, thereby forming the metal oxide.
摘要:
The present invention provides a hologram recording material which is suitable for volume hologram record and can attain high refractive index change, flexibility, high sensitivity, low scattering, environment resistance, that is, storage stability, durability, low dimensional change (low shrinkage) and high multiplicity in holographic memory record using not only a green laser but also a blue laser. A hologram recording material comprising: a metal oxide matrix; and a photopolymerizable compound which has at least one (meth)acrylamide group as a photo-reactive group, and has a polyalkylene glycol unit represented by the following formula: —(RO)n— wherein R represents a lower alkylene group, and n represents the number of repeating units of alkylene oxide.
摘要:
The present invention provides a hologram recording material which is suitable for volume hologram record and attains high refractive index change, flexibility, high sensitivity, low scattering, environment resistance, durability, low shrinkage and high multiplicity in holographic memory record using not only a green laser but also a blue laser; a process for producing the same; and a hologram recording medium having the hologram recording material. A hologram recording material comprising: a metal oxide containing at least Si and Zr as metals wherein a β-dicarbonyl compound is coordinated to Zr; and a photopolymerizable compound, wherein a mole ratio of the β-dicarbonyl compound to the Zr atom (β-dicarbonyl compound/Zr ratio) is 2/1 or more and 3/1 or less, and a mole ratio of the Si atom to the Zr atom (Si/Zr ratio) is more than 1/1 and 1.15/1 or less in the metal oxide. A hologram recording medium (11) comprising the hologram recording material layer (21).
摘要:
A recording and reading system for a multi-layered optical recording medium includes: a multi-layered optical recording medium including a plurality of recording layers and a single servo layer; and an optical head. The optical head includes a recording and reading objective lens of a signal recording and reading optical system and a servo objective lens of a servo signal detection optical system that are disposed on a common actuator. The recording and reading objective lens is mounted on the common actuator through a minute-drive apparatus so as to be minutely driven in a focusing direction relative to the servo objective lens. When the servo objective lens is focused on the servo layer, a reading light beam is quickly focused on a target one of the plurality of recording layers.
摘要:
A hologram recording medium includes a support substrate, a hologram recording material layer, a transparent gel layer, and a protective substrate. The transparent gel layer is formed of a resin material gelated by cross-linking, or more specifically, such as gelated silicone cross-linked by hydrosilylation or gelated polyurethane cross-linked by polyaddition of isocyanic ester to alcohol. The transparent gel layer serves as a filler to compensate for variations in thickness of the hologram recording material layer. The transparent gel layer fills those gaps occurring between the recording material layer of the hologram recording medium and the adjacent substrate, without having adverse effects on the recording characteristics, in a manner that allows for controlling the refractive index.
摘要:
The present invention provides a hologram recording medium which is suitable for volume hologram record and can attain high refractive index change, flexibility, high sensitivity, low scattering, environment resistance, durability, low dimensional change (low shrinkage) and high multiplicity in holographic memory record using not only a green laser but also a blue laser. A hologram recording medium (11) comprising at least a hologram recording layer (21), wherein the hologram recording layer contains a metal oxide matrix comprising metal oxide fine particles, and a photopolymerizable compound; the metal oxide fine particles comprise metal oxide fine particles containing Ti as a metallic element; and at the time of subjecting the hologram recording layer before exposure to light to an extraction operation in n-butyl alcohol having a mass 100 times the mass (W) of said recording layer, thereby yielding a sol solution; filtrating the sol solution to obtain a filtrated sol solution; and measuring particle diameter distribution of sol particles in the filtrated sol solution by a dynamic light scattering method; and obtaining an average particle diameter thereof, the average particle diameter of the sol particles is in the range of 5 nm or more and 50 nm or less.
摘要:
A hologram recording material includes a polymerizable monomer (A) that is active in radical polymerization but is substantially inactive in cationic polymerization, a polymerizable monomer (B) that is active in cationic polymerization but is substantially inactive in radical polymerization, and an initiator system (C) that polymerizes at least one of the polymerizable monomer (A) and the polymerizable monomer (B) through irradiation with light. The polymerizable monomer (A) and the polymerizable monomer (B) each have, in its structure, a moiety selected from the group consisting of aromatic rings, halogen atoms other than a fluorine atom, and sulfur atoms not derived from a cyclic sulfide or a mercapto group. A hologram recording medium includes a recording layer composed of the hologram recording material.
摘要:
An optimal recording exposure is determined by varying in the first to nth stages the recording exposure with a write laser beam to record a bright pattern image and a dark pattern image in each stage as the first to nth bright pattern images and the first to nth dark pattern images, respectively; irradiating the respective pattern images with a read beam to detect the intensity of a diffracted beam from the central portion of each image of the bright and dark patterns; calculating Sa1/Sb1=SNR1, . . . , and San/Sbn=SNRn, where Sa1 to San are the intensity of a diffracted beam from the first to nth bright pattern images and Sb1 to Sbn, are the intensity of s diffracted beam from the first to nth dark pattern images; and determining a recording exposure which is given at the SNRmax being the maximum value of the resulting SNR1 to SNRn.