摘要:
A thin film transistor, a method of manufacturing the same, and a display device including the same, the thin film transistor including a substrate; a polysilicon semiconductor layer on the substrate; and a metal pattern between the semiconductor layer and the substrate, the metal pattern being insulated from the semiconductor layer, wherein the polysilicon of the semiconductor layer includes a grain boundary parallel to a crystallization growing direction, and a surface roughness of the polysilicon semiconductor layer defined by a distance between a lowest peak and a highest peak in a surface thereof is less than about 15 nm.
摘要:
Display substrates are disclosed. In one aspect, display substrates include a first signal line, a second signal line, a first detour signal line and a second detour signal line. The first signal line includes a first region and a pair of second regions disposed on opposite sides of the first region. The pair of second regions are spaced apart from the first region. The second signal line crosses the first signal line. The second signal line includes a third region and a pair of fourth regions disposed on opposite sides of the third region. The pair of fourth regions are spaced apart from the third region. The first detour signal line electrically connects the pair of second regions to each other. The second detour signal line electrically connects the pair of fourth regions to each other. Related methods are also disclosed.
摘要:
Display substrates including a capacitor, methods of repairing a display substrate, and display devices including the display substrate are disclosed. In one embodiment, the capacitor includes a first electrode layer, a dielectric layer, and a second electrode layer sequentially stacked. A portion of the second electrode layer is shorted to the first electrode layer. An opening penetrates the second electrode layer to expose a top surface of the dielectric layer. Due to the opening, the shorted portion is separated from the surrounding portions of the second electrode layer. The opening may be formed by irradiating a laser.
摘要:
An organic light emitting diode display device and a method of manufacturing the same are disclosed. The organic light emitting diode display device comprises: a substrate; an active layer disposed on the substrate; a first insulating layer disposed on the active layer; a gate electrode disposed on the first insulating layer; a pixel electrode disposed on the first insulating layer; source and drain electrodes electrically insulated from the gate electrode and electrically connected to the active layer; an intermediate layer disposed on the pixel electrode, wherein the intermediate layer comprises an organic emission layer; and an opposite electrode disposed on the intermediate layer, wherein the pixel electrode is connected to the source electrode or the drain electrode, wherein the gate electrode comprises a first conductive layer, a second conductive layer, a third conductive layer, and a fourth conductive layer that are sequentially stacked, and wherein the second and third conductive layers comprises a first oxidation-reduction potential difference therebetween, and the first and third conductive layers comprises a second oxidation-reduction potential difference therebetween, and the first oxidation-reduction potential difference is less than the second oxidation-reduction potential difference.
摘要:
An organic light-emitting display device includes a plurality of sub-pixels each comprising a light-emitting portion, a thin film transistor (TFT), and a capacitor, each of the sub-pixels emitting a different color, wherein the capacitor of at least one of the plurality of sub-pixels extends into at least one adjacent one of the sub-pixels.
摘要:
An organic light emitting diode display, which can obtain a resonance effect by its metal mirror, and a manufacturing method thereof. The display includes a semiconductor layer, a dummy pattern layer, a gate insulating film, a pixel electrode, and a gate electrode. The semiconductor layer is formed of polysilicon on a base substrate. The dummy pattern layer is formed of polysilicon at a same layer level as the semiconductor layer and surrounds a light emitting region. The gate insulating film is on the base substrate while covering the semiconductor layer and the dummy pattern layer, and has recess portions corresponding to the light emitting region. The pixel electrode is filled in the recess portions, and is formed of a metal mirror multilayer including a transmissive conductive film and a reflective conductive film. The gate electrode is on the gate insulating film at a distance from the pixel electrode.
摘要:
In an organic light emitting diode (OLED) display and a manufacturing method, an organic light emitting diode (OLED) display includes: a substrate; a semiconductor layer pattern formed on the substrate and including a first capacitor electrode; a gate insulating layer covering the semiconductor layer pattern; a first conductive layer pattern formed on the gate insulating layer and including a second capacitor electrode having at least a portion overlapping the first capacitor electrode; an interlayer insulating layer having a capacitor opening exposing a portion of the second capacitor electrode and covering the second capacitor electrode; and a second conductive layer pattern formed on the interlayer insulating layer, wherein the capacitor opening includes a first transverse side wall parallel to and overlapping the second capacitor electrode, a second transverse side wall parallel to and not overlapping the second capacitor electrode, and a longitudinal side wall connecting the first transverse side wall and the second transverse side wall to each other and overlapping the first capacitor electrode.
摘要:
An organic light-emitting display device and a method of manufacturing the organic light-emitting display device are disclosed. The organic light-emitting display device includes a bottom capacitor electrode that is formed over the same plane as an active layer of a thin film transistor and includes a semiconductor doped with ion impurities, a pixel electrode, and a top capacitor electrode formed over the same plane as a gate electrode, wherein a contact hole entirely exposing the pixel electrode and the top capacitor electrode is formed.
摘要:
An organic light emitting diode (OLED) display includes: a substrate; a semiconductor layer on the substrate; a gate insulating layer covering the semiconductor layer; a gate electrode formed in the gate insulating layer and overlapping the semiconductor layer; a pixel electrode formed in a pixel area over the gate insulating layer; an interlayer insulating layer covering the gate electrode and the gate insulating layer, and exposing the pixel electrode through a pixel opening; a source electrode and a drain electrode formed in the interlayer insulating layer and connected to the semiconductor layer; and a barrier rib covering the interlayer insulating layer, the source electrode, and the drain electrode, and the drain electrode contacts a side wall of the pixel opening and is connected to the pixel electrode. Such an OLED display may have an improved aperture ratio.
摘要:
Making an OLED display, includes forming a first storage plate and a gate insulating layer covering the first storage plate on a substrate; sequentially forming a second storage plate covering the first storage plate and a capacitor intermediate in the gate insulating layer; forming a first doping region by injecting an impurity to a part that is not covered by the capacitor intermediate in the first storage plate; forming an interlayer insulating layer having a capacitor opening exposing the capacitor intermediate, and a plurality of erosion preventing layers on an edge of the capacitor intermediate toward the first doping region in the capacitor opening; removing the capacitor intermediate including the erosion preventing layer and a lower region of the erosion preventing layer, and injecting an impurity in the first storage plate through the second storage plate to form a second doping region contacting the first doping region.