摘要:
A conversion apparatus comprises a pixel region, on a substrate, including a plurality of pixels arranged in a matrix, each pixel having a conversion element that converts radiation into electric signals and a switching element, wherein the switching element has a structure comprising a gate electrode, a first insulating layer, a second insulating layer and a semiconductor layer from the substrate side in this order, and the conversion element has a structure comprising a bottom electrode, the second insulating layer and a semiconductor layer on the first insulating layer from the substrate side in this order.
摘要:
A reset method of a conversion element is improved, and the simplification of wiring and the improvement of an open area ratio of the conversion element by means of an image pickup apparatus including a plurality of pixels arranged on an insulating substrate, each of the pixels including a conversion element, a first switching element connected to the conversion element in order to transfer an electric signal obtained by the conversion element, and a second switching element connected to the conversion element in order to reset the conversion element by giving constant potential to the conversion element, wherein the second switching element includes a gate electrode, and a source electrode and a drain electrode, and one of the source electrode and the drain electrode is electrically connected to the gate electrode.
摘要:
In an image pick-up apparatus, a plurality of pixels, each pairing a semiconductor conversion element for converting an incident electromagnetic wave to an electric signal and a thin film transistor connected to the semiconductor conversion element, is arranged in a two-dimensional state on a substrate. The image pick-up apparatus includes gate wiring to which gate electrodes of thin film transistors of a plurality of pixels arranged in one direction are commonly connected, and signal wiring to which source electrodes or drain electrodes of thin film transistors of a plurality of pixels arranged in a direction different from the one direction are commonly connected on the substrate. Protection layers are arranged on the thin film transistors, the gate wiring and the signal wiring. The protection layers formed at least at the same time. Then, the protection layers are removed in at least a part or all of regions in which the semiconductor conversion elements are formed.
摘要:
In an image pick-up apparatus, a plurality of pixels, each pairing a semiconductor conversion element for converting an incident electromagnetic wave to an electric signal and a thin film transistor connected to the semiconductor conversion element, is arranged in a two-dimensional state on a substrate. The image pick-up apparatus includes gate wiring to which gate electrodes of thin film transistors of a plurality of pixels arranged in one direction are commonly connected, and signal wiring to which source electrodes or drain electrodes of thin film transistors of a plurality of pixels arranged in a direction different from the one direction are commonly connected on the substrate. Protection layers are arranged on the thin film transistors, the gate wiring and the signal wiring. The protection layers formed at least at the same time. Then, the protection layers are removed in at least a part or all of regions in which the semiconductor conversion elements are formed.
摘要:
A radiation detection apparatus comprises a plurality of pixels each including a conversion element which converts incident radiation into a charge, a switching element which transfers the charge, and an interlayer insulation film disposed between the conversion element and the switching element, a gate line to drive the switching element, and a signal line located to intersect with the gate line and configured to read out the charge transferred from the switching element, wherein Ca≧∈0×∈×S/d and 7d≦P/2 is satisfied, where P is a pixel pitch, Ca is a sum total of coupling capacitances between the signal line and the gate line, S is an overlapping area of the signal line and the conversion element, d is a thickness of the interlayer insulation film, ∈ is a relative dielectric constant of the interlayer insulation film, and ∈0 is a vacuum dielectric constant.
摘要翻译:辐射检测装置包括多个像素,每个像素包括将入射辐射转换为电荷的转换元件,传送电荷的开关元件和设置在转换元件和开关元件之间的层间绝缘膜,驱动栅极线 所述开关元件和与所述栅极线相交并且被配置为读出从所述开关元件传递的电荷的信号线,其中,Ca≥∈0×∈×S / d和7d≦̸ P / 2,其中P 是像素间距,Ca是信号线和栅极线之间的耦合电容的总和,S是信号线和转换元件的重叠面积,d是层间绝缘膜的厚度,ε是相对的 层间绝缘膜的介电常数,∈0为真空介电常数。
摘要:
In a radiation detecting apparatus of the invention, plural pixels are arranged, and the pixel has a conversion element converting a radiation into an electric signal and a switching element connected to the conversion element. The conversion element includes a first electrode disposed on a first surface of an insulating substrate, a second electrode disposed on the first electrode, and a semiconductor layer disposed between the first electrode and the second electrode. The first electrode is made of a light-transmitting conductive material which transmits light emitted from a light source, and the first electrode is formed form a light transmitting electroconductive material transmitting light emitted form a light source disposed on a second surface of the insulating substrate opposite to the first surface. The switching element has a light shielding member which prevents incidence of the light from the light source to the switching element.
摘要:
In a radiation detecting apparatus of the invention, plural pixels are arranged, and the pixel has a conversion element converting a radiation into an electric signal and a switching element connected to the conversion element. The conversion element includes a first electrode disposed on a first surface of an insulating substrate, a second electrode disposed on the first electrode, and a semiconductor layer disposed between the first electrode and the second electrode. The first electrode is made of a light-transmitting conductive material which transmits light emitted from a light source, and the first electrode is formed form a light transmitting electroconductive material transmitting light emitted form a light source disposed on a second surface of the insulating substrate opposite to the first surface. The switching element has a light shielding member which prevents incidence of the light from the light source to the switching element.
摘要:
Pixels including a photoelectric conversion element 1, a signal transfer TFT (thin film transistor) 2 electrically connected to the photoelectric conversion element, and a reset TFT 3 electrically connected to the photoelectric conversion element and for applying a bias to the photoelectric conversion element are two-dimensionally disposed on the insulating substrate, and the photoelectric conversion element 1, signal transfer TFT 2, and reset TFT 3 are electrically connected through a common contact hole 9. A source or drain electrode of the signal transfer TFT 2 and the source or drain electrode of the reset TFT 3 are formed from a common electroconductive layer.
摘要:
A radiation imaging apparatus has a pixel region arranged on a substrate. Arranged in a matrix pattern in the pixel region are pixels, each pixel including a conversion element which converts radiation to electrical charges, and a switching element which is connected to the conversion element therein. The radiation imaging apparatus has, in a region outside the pixel region of the substrate, an intersection at which a signal line connected to the switching element and a bias line connected to the conversion element intersects. At the intersection, a semiconductor layer is arranged between the signal line and the bias line, and a carrier blocking portion is arranged between the semiconductor layer and the signal line.
摘要:
In a radiation detecting apparatus of the invention, plural pixels are arranged, and the pixel has a conversion element converting a radiation into an electric signal and a switching element connected to the conversion element. The conversion element includes a first electrode disposed on a first surface of an insulating substrate, a second electrode disposed on the first electrode, and a semiconductor layer disposed between the first electrode and the second electrode. The first electrode is made of a light-transmitting conductive material which transmits light emitted from a light source, and the first electrode is formed from a light transmitting electroconductive material transmitting light emitted from a light source disposed on a second surface of the insulating substrate opposite to the first surface. The switching element has a light shielding member which prevents incidence of the light from the light source to the switching element.