Abstract:
A method is provided for performing, by a user equipment (UE), a power headroom reporting (PHR) procedure in a wireless communication system. In a first PHR procedure, a first PHR is triggered, and it is determined that a first uplink (UL) resource cannot accommodate a PHR media access control (MAC) control element (CE) plus its subheader. The PHR MAC CE is not transmitted in the first PHR procedure and it is determined that the first PHR is not cancelled. Further, in a second PHR procedure, a second PHR is triggered, and it is determined that at least one PHR, including the first PHR and the second PHR, has been triggered and not cancelled. It is then determined that a second UL resource can accommodate a PHR MAC CE plus its subheader, and the PHR MAC CE is transmitted by using the second UL resource to an eNodeB (eNB).
Abstract:
A timer for processing data blocks is proposed for a receiver of a mobile communications system. If the timer is not running, the timer is started based a data block. The data block has a sequence number higher than a sequence number of another data block that was first expected to be received. If the timer is stopped or expires, the timer is based on a highest sequence number of a data block among data blocks that cannot be delivered to a higher entity. The timer can be used to prevent a stall condition in mobile communications.
Abstract:
A method of generating a data block in a wireless communication system is provided. The method includes preparing a first upper data block, a second upper data block and a third upper data block and generating a lower data block comprising a header, the first upper data block, the second upper data block and the third upper data block, the header comprising a first length indicator and a second length indicator, wherein the first length indicator indicates the length of the first upper data block and the second length indicator indicates the length of the second upper data block. Data rate can be improved by reducing the size of a header of data blocks.
Abstract:
Disclosed is a wireless communication system and terminal for providing a wireless communication service, and more particularly, a method of selectively applying a PDCP function based on data characteristic transmitted through a radio bearer in an Evolved Universal Mobile Telecommunications System (E-UMTS) evolved from a UMTS, Long Term Evolution (LTE) System or LTE-Advanced (LTE-A) system.
Abstract:
A timer for processing data blocks is proposed for a receiver of a mobile communications system. If the timer is not running, the timer is started based a data block. The data block has a sequence number higher than a sequence number of another data block that was first expected to be received. If the timer is stopped or expires, the timer is based on a highest sequence number of a data block among data blocks that cannot be delivered to a higher entity. The timer can be used to prevent a stall condition in mobile communications.
Abstract:
A method is described for a device to re-establish a connection with a Donor evolved Node B (DeNB). The device communicates with the DeNB via a Un interface using a subframe for the device only. The device detects a problem associated with the Un interface, and performs a radio resource control (RRC) re-establishment procedure to re-establish a RRC connection between the device and the DeNB after detecting the problem associated with the Un interface. The device starts a timer upon detecting the problem associated with the Un interface, and releases a restriction of using the subframe for the device only, if the timer expires. An occurrence of the problem associated with the Un interface is determined in response to receiving consecutive out-of-sync indications.
Abstract:
A method for random access to a base station by a user equipment (UE) in a mobile communication system using carrier aggregation in which communication is conducted over a plurality of component carriers, and a terminal for the method are disclosed. When the UE performs a contention-based random access procedure in the mobile communication system to which CA technology is applied, the UE considers an uplink grant signal as a contention resolution message when receiving the uplink grant signal from a eNB only when the uplink grant signal is received through a downlink CC corresponding to an uplink CC used to transmit a random access preamble or a third message, to thereby prevent contention resolution from being erroneously ended.
Abstract:
A method and apparatus of managing a radio bearer is disclosed. A relay node (RN) sets up at least one UuRB for a Uu interface between a user equipment (UE) and the RN and a UnRB for a Un interface between the RN and a base station (BS). The at least one UuRB is mapped to the UnRB according to quality of service (QoS) guaranteed by the at least one UuRB to setup a RB between the UE and the BS.
Abstract:
A method and apparatus for supporting a closed subscriber group (CSG) service is provided. The apparatus includes a memory to store CSG subscription information and a processor operatively coupled to the RF unit and memory to implement a radio interface protocol. The processor accesses a base station (BS), transmits the CSG subscription information to the BS, receives an access mode from the BS where the access mode is determined based on the CSG subscription information, and negotiates with the BS with regard to a CSG service if the access mode supports a CSG to which the apparatus belongs.
Abstract:
A method of performing uplink synchronization in a wireless communication system includes transmitting a random access preamble which is randomly selected from a set of random access preambles, receiving a random access response, the random access response comprising a random access preamble identifier corresponding to the random access preamble and a time alignment value for uplink synchronization, starting a time alignment timer after applying the time alignment value, starting a contention resolution timer after receiving the random access response, wherein contention resolution is not successful when the contention resolution timer is expired, and stopping the time alignment timer when the contention resolution timer is expired.