Abstract:
This disclosure describes a head-mounted display with a display assembly configured to display content to most or all of a user's field of view. The display assembly can be configured to display content in far-peripheral regions of the user's field of view differently than content upon which a user can focus. For example, spatial resolution, color resolution, refresh rate and intensity (i.e. brightness) can be adjusted to save resources and/or to bring attention to virtual content positioned within a far-peripheral region. In some embodiments, these changes can save processing resources without detracting from the user's overall experience.
Abstract:
A display subsystem for a virtual image generation system comprises a planar waveguide apparatus, an optical fiber, at least one light source configured for emitting light from a distal end of the optical fiber, and a mechanical drive assembly to which the optical fiber is mounted as a fixed-free flexible cantilever. The drive assembly is configured for displacing a distal end of the optical fiber about a fulcrum in accordance with a scan pattern, such that the emitted light diverges from a longitudinal axis coincident with the fulcrum. The display subsystem further comprises an optical modulation apparatus configured for converging the light from the optical fiber towards the longitudinal axis, and an optical waveguide input apparatus configured for directing the light from the optical modulation apparatus down the planar waveguide apparatus, such that the planar waveguide apparatus displays one or more image frames to an end user.
Abstract:
An eyepiece for projecting an image to an eye of a viewer includes a first planar waveguide positioned in a first lateral plane, a second planar waveguide positioned in a second lateral plane adjacent the first lateral plane, and a third planar waveguide positioned in a third lateral plane adjacent the second lateral plane. The first waveguide includes a first diffractive optical element (DOE) coupled thereto and disposed at a lateral position. The second waveguide includes a second DOE coupled thereto and disposed at the lateral position. The third waveguide includes a third DOE coupled thereto and disposed at the lateral position. The eyepiece further includes a first optical filter disposed between the first waveguide and the second waveguide at the lateral position, and a second optical filter positioned between the second waveguide and the third waveguide at the lateral position.
Abstract:
A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.
Abstract:
A display subsystem for a virtual image generation system comprises a planar waveguide apparatus, an optical fiber, at least one light source configured for emitting light from a distal end of the optical fiber, and a mechanical drive assembly to which the optical fiber is mounted as a fixed-free flexible cantilever. The drive assembly is configured for displacing a distal end of the optical fiber about a fulcrum in accordance with a scan pattern, such that the emitted light diverges from a longitudinal axis coincident with the fulcrum. The display subsystem further comprises an optical modulation apparatus configured for converging the light from the optical fiber towards the longitudinal axis, and an optical waveguide input apparatus configured for directing the light from the optical modulation apparatus down the planar waveguide apparatus, such that the planar waveguide apparatus displays one or more image frames to an end user.
Abstract:
A display subsystem for a virtual image generation system for use by an end user comprises a display, an optical fiber having a polarization-maintaining (PM) transmission fiber section and a non-PM scanning fiber section, a light source configured for injecting a linearly polarized light beam into the transmission fiber section, such that the linearly polarized light beam is emitted from the scanning fiber section, a mechanical scanning drive assembly in which the scanning fiber section is affixed, wherein the mechanical scanning drive assembly is configured for displacing the scanning optical fiber section is order to scan the emitted light beam, and a display configured for receiving the scanned light beam and generating an image to the end user.
Abstract:
A display subsystem for a virtual image generation system comprises a planar waveguide apparatus, an optical fiber, at least one light source configured for emitting light from a distal end of the optical fiber, and a mechanical drive assembly to which the optical fiber is mounted as a fixed-free flexible cantilever. The drive assembly is configured for displacing a distal end of the optical fiber about a fulcrum in accordance with a scan pattern, such that the emitted light diverges from a longitudinal axis coincident with the fulcrum. The display subsystem further comprises an optical modulation apparatus configured for converging the light from the optical fiber towards the longitudinal axis, and an optical waveguide input apparatus configured for directing the light from the optical modulation apparatus down the planar waveguide apparatus, such that the planar waveguide apparatus displays one or more image frames to an end user.
Abstract:
A display subsystem for a virtual image generation system. The display subsystem comprises a planar waveguide apparatus, and an optical fiber having a distal tip affixed relative to the planar waveguide apparatus, and an aperture proximal to the distal tip. The display subsystem further comprises at least one light source coupled the optical fiber and configured for emitting light from the aperture of the optical fiber, and a mechanical drive assembly to which the optical fiber is mounted to the drive assembly. The mechanical drive assembly is configured for displacing the aperture of the optical fiber in accordance with a scan pattern. The display subsystem further comprises an optical waveguide input apparatus configured for directing the light from the aperture of the optical fiber down the planar waveguide apparatus, such that the planar waveguide apparatus displays one or more image frames to the end user.
Abstract:
A method and system for increasing dynamic digitized wavefront resolution, i.e., the density of output beamlets, can include receiving a single collimated source light beam and producing multiple output beamlets spatially offset when out-coupled from a waveguide. The multiple output beamlets can be obtained by offsetting and replicating a collimated source light beam. Alternatively, the multiple output beamlets can be obtained by using a collimated incoming source light beam having multiple input beams with different wavelengths in the vicinity of the nominal wavelength of a particular color. The collimated incoming source light beam can be in-coupled into the eyepiece designed for the nominal wavelength. The input beams with multiple wavelengths take different paths when they undergo total internal reflection in the waveguide, which produces multiple output beamlets.
Abstract:
The systems and methods described can include approaches to calibrate head-mounted displays for improved viewing experiences. Some methods include receiving data of a first target image associated with an undeformed state of a first eyepiece of a head-mounted display device; receiving data of a first captured image associated with deformed state of the first eyepiece of the head-mounted display device; determining a first transformation that maps the first captured image to the image; and applying the first transformation to a subsequent image for viewing on the first eyepiece of the head-mounted display device.