摘要:
A quantized multi-rank beamforming scheme for multiple-antenna systems such as a multiple-input-multiple-output (MIMO) wireless downlink. User equipment (UE) estimates downlink channel and transmit power and determines rank and power allocations. A quantized beamforming matrix is then determined by the UE using successive beamforming. The UE also determines channel quality indices (CQI) which it feeds-back to the wireless downlink base station along with the index of the quantized beamforming matrix. The base station uses the CQI information to select a UE for scheduling of downlink transmission and the quantized beamforming matrix index received from the selected UE to beamform the downlink transmission to the UE. Base station overhead and is minimized while providing near-optimal performance given the constraints of a limited feed-back channel and computational complexity of the UE.
摘要:
Methods and apparatus are disclosed for applying successive multi-rank beamforming strategies (e.g., successive precoding strategies) for the design of precoders over a set of parallel channels. Successive beamforming is applied to a narrow band channel model and is also applied for finer quantization of a single beamforming vector (e.g., recursive beamforming). A first embodiment provides the optimal approach with high complexity. An alternative embodiment provides successive beamforming for near optimal precoding selection with medium complexity. A low complexity method for precoder selection is also provided wherein a channel representative matrix for the set of parallel channels is determined and successive beamforming on the calculated channel representative is applied.
摘要:
Methods and apparatus are disclosed for applying successive multi-rank beamforming strategies (e.g., successive precoding strategies) for the design of precoders over a set of parallel channels. Successive beamforming is applied to a narrow band channel model and is also applied for finer quantization of a single beamforming vector (e.g., recursive beamforming). A first embodiment provides the optimal approach with high complexity. An alternative embodiment provides successive beamforming for near optimal precoding selection with medium complexity. A low complexity method for precoder selection is also provided wherein a channel representative matrix for the set of parallel channels is determined and successive beamforming on the calculated channel representative is applied.
摘要:
Methods and apparatus are disclosed for applying successive multi-rank beamforming strategies (e.g., successive precoding strategies) for the design of precoders over a set of parallel channels. Successive beamforming is applied to a narrow band channel model and is also applied for finer quantization of a single beamforming vector (e.g., recursive beamforming). A first embodiment provides the optimal approach with high complexity. An alternative embodiment provides successive beamforming for near optimal precoding selection with medium complexity. A low complexity method for precoder selection is also provided wherein a channel representative matrix for the set of parallel channels is determined and successive beamforming on the calculated channel representative is applied.
摘要:
A method for improving multiple-input multiple-output MIMO downlink transmissions includes obtaining a channel state information CSI report including preferred matrix index PMI for precoding, channel quality index CQI and rank index RI at a base station from user terminals through a channel feedback; applying selectively a signal-to-interference-plus-noise-ratio SINR offset to a SINR of said CSI report; applying selectively a rate matching responsive to SINR offset or the CSI report; and controlling or adjusting the SINR offset.
摘要:
Methods and apparatus are disclosed for applying successive multi-rank beamforming strategies (e.g., successive precoding strategies) for the design of precoders over a set of parallel channels. Successive beamforming is applied to a narrow band channel model and is also applied for finer quantization of a single beamforming vector (e.g., recursive beamforming). A first embodiment provides the optimal approach with high complexity. An alternative embodiment provides successive beamforming for near optimal precoding selection with medium complexity. A low complexity method for precoder selection is also provided wherein a channel representative matrix for the set of parallel channels is determined and successive beamforming on the calculated channel representative is applied.
摘要:
Multi-user (MU-) MIMO systems with quantized feedback are designed to maximize the sum-rate via scheduling and linear precoding. To maximize throughput over the network, quantized CSIT is sent through a low-rate feedback link feedback from a plurality of users back to a base station. The base station then determines a subset of the plurality of users to transmit one or more signals to based on the received feedback and determines a preceding matrix based on the received feedback from the plurality of users wherein the precoding matrix maximizes a sum-rate throughput for the subset of the plurality of users. Additionally, based on the received feedback, the base station designs a quantization codebook. This codebook may be designed off-line and/or online. The codebook and/or precoding matrix are used to transmit signals to the users.
摘要:
A quantized multi-rank beamforming scheme for multiple-antenna systems such as a multiple-input-multiple-output (MIMO) wireless downlink User equipment (UE) estimates downlink channel and transmit power and determines rank and power allocations. A quantized beamforming matrix is then determined by the UE using successive beamforming. The UE also determines channel quality indices (CQI) which it feeds-back to the wireless downlink base station along with the index of the quantized beamforming matrix. The base station uses the CQI information to select a UE for scheduling of downlink transmission and the quantized beamforming matrix index received from the selected UE to beamform the downlink transmission to the UE. Base station overhead and is minimized while providing near-optimal performance given the constraints of a limited feed-back channel and computational complexity of the UE.
摘要:
A quantized multi-rank beamforming scheme for multiple-antenna systems such as a multiple-input-multiple-output (MIMO) wireless downlink. User equipment (UE) estimates downlink channel and transmit power and determines rank and power allocations. A quantized beamforming matrix is then determined by the UE using successive beamforming. The UE also determines channel quality indices (CQI) which it feeds-back to the wireless downlink base station along with the index of the quantized beamforming matrix. The base station uses the CQI information to select a UE for scheduling of downlink transmission and the quantized beamforming matrix index received from the selected UE to beamform the downlink transmission to the UE. Base station overhead and is minimized while providing near-optimal performance given the constraints of a limited feed-back channel and computational complexity of the UE.
摘要:
A method for full duplex communication that includes creating a canceling self interference signal using a passive noise cancellation, and attaining full-duplex simultaneous in time and overlapping in space wireless transmission and reception on same frequency band responsive to the step of creating a canceling self interference signal.