Abstract:
A receiver for use in a pilot-aided OFDM system and a method of performing channel length estimation of a channel in a wireless communication system includes using transmitted and received wireless signals to estimate a channel carrier function vector at continuous and scattered pilot positions of consecutive OFDM symbols; performing time-domain interpolation by (i) upsampling the estimated the channel carrier function vectors at the scattered pilot positions by inserting zeros in between estimated scattered pilot positions, and (ii) filtering the upsampled vectors using a finite impulse response filter comprising a filter bank comprising a plurality of filters; mapping the channel carrier function vector to only one of the filters in the filter bank located in the finite impulse response filter, wherein the mapping causes noise reduction and enhanced channel estimation thereby increasing a maximum Doppler frequency in the channel.
Abstract:
A method and system for coherent detection in which a OFDM symbol is multiplied by the complex conjugate of the previous OFDM symbol, which is obtained by one OFDM symbol delay and a complex conjugation circuit. This soft decision is passed through a QPSK slicer to obtain a hard decision. The soft decision is then divided by the hard decisions. The channel phase change between the two OFDM symbols is then obtained. For the first OFDM symbol, the channel is computed. A channel estimate for each ODFM symbol is computed from corresponding channel estimates and channel phase difference estimates. The channel phase difference between each two OFM symbols is computed. The channel phase difference is passed through an exponent operation and multiplied by the soft decision to obtain a refined soft decision that is then passed through another QPSK slicer to obtain the final hard decision.
Abstract:
A receiver and method of enhancing transmitted data signals in a wireless communications system includes wirelessly transmitting and receiving a data signal over a wireless channel in the communications system; providing known channel parameters corresponding to the wireless channel; expressing the data signal as an input data vector; replacing indexes in the input data vector having a magnitude greater than one into indexes in the input data vector having a unit norm; creating an output data vector; and calculating a dot product of (i) the input data vector comprising replaced indexes; and (ii) the output data vector, wherein the calculating process equalizes the data signal received by a receiver in the presence of Doppler frequency shifts of the data signal.
Abstract:
A data transmission system and method for DVB-H signals for enhancing data robustness of a DVB-H receiver in additive white Gaussian noise (AWGN) channels includes transmitting IP datagrams from a DVB-H transmitter to the DVB-H receiver; applying a MPE section and a FEC section to the transmitted IP datagrams; mapping the transmitted IP datagrams to TS packets; aligning boundaries of the transmitted IP datagrams to a given number of TS packets; fixing a size of the IP datagrams to a known value at the DVB-H receiver; and extracting the IP datagrams from the DVB-H receiver.
Abstract:
A novel approach of repeated adaptation is provided that can be applied to either one or both of channel estimation and/or equalization. From an incoming data packet that includes data and a training sequence, a modified data packet is generated that includes the data, the training sequence, and at least one additional copy of the training sequence. From the format of this modified data packet, the same training sequence can be used over and over again a desired number of times to perform channel estimation and subsequent calculation of equalizer tap coefficients. Alternatively, the same training sequence can be used over and over again a desired number of times to converge the equalizer coefficient taps directly without doing any preliminary channel estimation. Generally, either of these approaches can be characterized as a cyclic adaptation operation that provides improved performance without incurring any reduction in throughput of the communication channel.
Abstract:
Cancellation of interference in a communication system with application to S-CDMA. A relatively straight-forward implemented and computationally efficient approach of selecting a predetermined number of unused codes is used to perform weighted linear combination selectively with each of the input spread signals in a multiple access communication system. If desired, the predetermined number of unused codes is always the same in each implementation. Alternatively, the predetermined number of unused codes is selected from within a reordered code matrix using knowledge that is shared between the two ends of a communication system, such as between the CMs and a CMTS. While the context of an S-CDMA communication system having CMs and a CMTS is used, the solution is generally applicable to any communication system that seeks to cancel narrowband interference. Several embodiments are also described that show the generic applicability of the solution across a wide variety of systems.
Abstract:
A system for mitigating impairment in a communication system includes a delay block, a signal level block, a moving average window block, an impulse noise detection block, and a combiner. The delay block receives and delays each chip of a plurality of chips in a spreading interval. The signal level block determines a signal level of each chip of the plurality of chips in the spreading interval. The moving average window block determines a composite signal level for a chip window corresponding to the chip. The impulse noise detection block receives the signal level, receives the composite signal level, and produces an erasure indication for each chip of the plurality of chips of the corresponding chip window. The combiner erases chips of the plurality of chips of the spreading interval based upon the erasure indication.
Abstract:
A technique for iterative decoding between turbo and Reed Solomon (RS) decoders for improving bit error rate (BER) and packet error rate (PER) in a receiver in a wireless communication system comprises receiving data samples comprising turbo encoded packets and RS code words at the receiver; decoding turbo encoded packets of the received data samples using a turbo decoder; decoding RS code words of the received data samples using a RS decoder; feeding the RS decoded data to turbo decoder to perform a plurality of iterations; and correcting data errors present in the received data samples.
Abstract:
Estimating a current location of a receiver in a MediaFLO™ (Forward Link Only) mobile multimedia multicast system comprises receiving digital signals comprising a MediaFLO™ superframe comprising orthogonal frequency division multiplexing (OFDM) symbols; performing slot 3 processing of each medium access control (MAC) time unit of a data channel to identify a transmitter identity (TxID) of each transmitter; identifying corresponding geographical coordinates of each TxID; regenerating the digital signals for each of the transmitters using a local-area differentiator (LID) and a wide-area differentiator (WID) of the transmitters; dividing the digital signals by the corresponding regenerated transmitted signal to obtain channel estimates between the receiver and the corresponding transmitters; detecting a first peak in the channel estimates to determine a distance between the receiver and the corresponding transmitters; calculating a time difference of arrival of the digital signals; and estimating a current location of the receiver.
Abstract:
A method of estimating a coarse frequency offset of Digital Multimedia Broadcasting (DMB) transmission frames includes receiving the DMB transmission frames including a synchronization channel having a phase reference symbol, circularly shifting the phase reference symbol by applying a circular shift to the phase reference symbol, numerically correlating the circularly shifted phase reference symbol with a known correct phase reference symbol to obtain a highest peak and a side peaks of the numeric correlation, and computing a phase reference symbol angle based on a multiplication of the peak and a carrier spacing of the DMB transmission frames. The peak is determined when the circularly shifted phase reference symbol is equal to the known correct phase reference symbol. The peak and side peaks corresponding to the peak are operated in a range of a maximum value of the circular shift.