Abstract:
Directly computing Feed Forward Equalizer (FFE) coefficients and Feed Back Equalizer (FBE) coefficients of a Decision Feedback Equalizer (DFE) from a channel estimate. The FBE coefficients have an energy constraint. A recursive least squares problem is formulated based upon the DFE configuration, the channel estimate, and the FBE energy constraint. The recursive least squares problem is solved to yield the FFE coefficients. The FFE coefficients are convolved with a convolution matrix that is based upon the channel estimate to yield the FBE coefficients. A solution to the recursive least squares problem is interpreted as a Kalman gain vector. A Kalman gain vector solution to the recursive least squares problem may be determined using a Fast Transversal Filter (FTF) algorithm.
Abstract:
An apparatus and method of applying a fast algorithm to a pilot-based channel estimation process includes receiving, in a receiver, a signal comprising information bits transmitted in a wireless channel, executing a pilot-based channel estimation process running on a decision-directed turbo estimation procedure having a p structure for a vector of pilots and an upper bound N for a channel spread based on a feedback of detected information bits via OFDM, encoding the detected information bits, re-encoding the detected information bits at a decoder output, re-constructing and subtracting an ICI term from the received signal, modulating the detected information bits, estimating channel symbols in a per-carrier basis based on a diagonal matrix of a full matrix involved in the pilot-based channel estimation, and performing training of the wireless channel based on an entire vector of the channel symbols.
Abstract:
An apparatus and method of applying a superfast algorithm to a pilot-based channel estimation process includes receiving a signal comprising information bits transmitted in a wireless channel, executing the pilot-based channel estimation process having p structures for a vector of pilot structures and an upper bound N for a channel spread, determining a result of a matrix inversion of a channel correlation matrix for an error channel estimation offline without performing a matrix inversion, storing pilot information of the received signal for channel recovery in a transform domain, representing the Toeplitz inverse by a FFT representation, detecting and estimating nonzero taps of a channel impulse response of the wireless channel, obtaining a non-structured minimum mean-square-error (MMSE) estimate as a first estimate of locations of the nonzero taps, and replacing the non-structured MMSE estimate by an estimate computed by a tap detection algorithm.
Abstract:
An apparatus and method of applying a fast algorithm to a pilot-based channel estimation process includes receiving, in a receiver, a signal comprising information bits transmitted in a wireless channel, executing a pilot-based channel estimation process running on a decision-directed turbo estimation procedure having a p structure for a vector of pilots and an upper bound N for a channel spread based on a feedback of detected information bits via OFDM, encoding the detected information bits, re-encoding the detected information bits at a decoder output, re-constructing and subtracting an ICI term from the received signal, modulating the detected information bits, estimating channel symbols in a per-carrier basis based on a diagonal matrix of a full matrix involved in the pilot-based channel estimation, and performing training of the wireless channel based on an entire vector of the channel symbols.
Abstract:
A receiver and method of enhancing transmitted data signals in a wireless communications system includes wirelessly transmitting and receiving a data signal over a wireless channel in the communications system; providing known channel parameters corresponding to the wireless channel; expressing the data signal as an input data vector; replacing indexes in the input data vector having a magnitude greater than one into indexes in the input data vector having a unit norm; creating an output data vector; and calculating a dot product of (i) the input data vector comprising replaced indexes; and (ii) the output data vector, wherein the calculating process equalizes the data signal received by a receiver in the presence of Doppler frequency shifts of the data signal.
Abstract:
An apparatus and method of applying a superfast algorithm to a pilot-based channel estimation process includes receiving a signal comprising information bits transmitted in a wireless channel, executing the pilot-based channel estimation process having p structures for a vector of pilot structures and an upper bound N for a channel spread, determining a result of a matrix inversion of a channel correlation matrix for an error channel estimation offline without performing a matrix inversion, storing pilot information of the received signal for channel recovery in a transform domain, representing the Toeplitz inverse by a FFT representation, detecting and estimating nonzero taps of a channel impulse response of the wireless channel, obtaining a non-structured minimum mean-square-error (MMSE) estimate as a first estimate of locations of the nonzero taps, and replacing the non-structured MMSE estimate by an estimate computed by a tap detection algorithm.
Abstract:
A receiver and method of enhancing transmitted data signals in a wireless communications system includes wirelessly transmitting and receiving a data signal over a wireless channel in the communications system; providing known channel parameters corresponding to the wireless channel; expressing the data signal as an input data vector; replacing indexes in the input data vector having a magnitude greater than one into indexes in the input data vector having a unit norm; creating an output data vector; and calculating a dot product of (i) the input data vector comprising replaced indexes; and (ii) the output data vector, wherein the calculating process equalizes the data signal received by a receiver in the presence of Doppler frequency shifts of the data signal.
Abstract:
A DVB-H transmitter having a plurality of video encoders each having a variable bit rate associated with IP datagrams for each television program broadcast by one RF channel. A method is also provided for statistical multiplexing of video channels for DVB-H mobile TV applications, wherein the method includes jointly configuring a plurality of video encoders each having a variable bit rate associated with IP datagrams for each television program broadcast by one RF channel.
Abstract:
Finding errors in the fragment headers of the fragments of service layer packets without depending on the erasure indicators of Medium Access Channel (MAC) layer packets of a wireless signal in a wireless communication system includes determining if length of the fragment header is between 121 and 127; determining if length of the fragment header is equal to 127, and if the fragment header is not the last fragment header in a service layer packet being formed; determining if summation of length of the fragment header for a value N is greater than 122 subtracted by number of fragments collected from a MAC layer packet including fragment header; and determining if fragment header is not the last fragment header in the service layer packet being formed, and if fragment header length is less than residual number of bytes in the MAC layer packet.
Abstract:
A receiver for use in a wireless network comprising a communications channel and a method of allocating deinterleaver memory usage in the receiver, wherein the receiver comprises a processor adapted to organize subchannels of the communications channel and set a number (N) of data bits per soft decision, wherein the soft decision is represented by N data bits; an address decoder adapted to decode the subchannels; a demapper adapted to receive QAM symbols and demap the QAM symbols to soft decisions; a deinterleaver adapted to perform deinterleaving on the soft decisions, wherein the deinterleaver comprises a memory component having a storage size that is a function of the number (N) of bits per soft decision; and a Viterbi decoder adapted to decode the deinterleaved soft decisions.