Abstract:
A DVB-H transmitter having a plurality of video encoders each having a variable bit rate associated with IP datagrams for each television program broadcast by one RF channel. A method is also provided for statistical multiplexing of video channels for DVB-H mobile TV applications, wherein the method includes jointly configuring a plurality of video encoders each having a variable bit rate associated with IP datagrams for each television program broadcast by one RF channel.
Abstract:
An apparatus and method of applying a fast algorithm to a pilot-based channel estimation process includes receiving, in a receiver, a signal comprising information bits transmitted in a wireless channel, executing a pilot-based channel estimation process running on a decision-directed turbo estimation procedure having a p structure for a vector of pilots and an upper bound N for a channel spread based on a feedback of detected information bits via OFDM, encoding the detected information bits, re-encoding the detected information bits at a decoder output, re-constructing and subtracting an ICI term from the received signal, modulating the detected information bits, estimating channel symbols in a per-carrier basis based on a diagonal matrix of a full matrix involved in the pilot-based channel estimation, and performing training of the wireless channel based on an entire vector of the channel symbols.
Abstract:
Finding errors in the fragment headers of the fragments of service layer packets without depending on the erasure indicators of Medium Access Channel (MAC) layer packets of a wireless signal in a wireless communication system includes determining if length of the fragment header is between 121 and 127; determining if length of the fragment header is equal to 127, and if the fragment header is not the last fragment header in a service layer packet being formed; determining if summation of length of the fragment header for a value N is greater than 122 subtracted by number of fragments collected from a MAC layer packet including fragment header; and determining if fragment header is not the last fragment header in the service layer packet being formed, and if fragment header length is less than residual number of bytes in the MAC layer packet.
Abstract:
A receiver for use in a wireless network comprising a communications channel and a method of allocating deinterleaver memory usage in the receiver, wherein the receiver comprises a processor adapted to organize subchannels of the communications channel and set a number (N) of data bits per soft decision, wherein the soft decision is represented by N data bits; an address decoder adapted to decode the subchannels; a demapper adapted to receive QAM symbols and demap the QAM symbols to soft decisions; a deinterleaver adapted to perform deinterleaving on the soft decisions, wherein the deinterleaver comprises a memory component having a storage size that is a function of the number (N) of bits per soft decision; and a Viterbi decoder adapted to decode the deinterleaved soft decisions.
Abstract:
Detecting Null symbols in a video data frame comprises sending OFDM symbols through a sliding windowed correlation process having a correlation window length proportional to a cyclic prefix length and a delay equal to a FFT size of the symbols, wherein output peaks of the process occur where two similar portions of the symbols coincide; checking peaks in windows sized equal to a duration of a symbol; determining whether the peaks are located in the middle of the windows; determining whether a shift has occurred in the location of the peak of a current window compared to in a second immediately previous window; determining whether the peak in a first immediately previous window is weak compared to that in a second immediately previous window; and declaring that a Null symbol exists in the first previous window when the shift has occurred and the determination of a weak peak exists.
Abstract:
A method of creating a visual program guide for use on a TDM mobile TV receiver comprises receiving a RF signal associated with a TV channel; demodulating all of the received RF signals associated with the TV channels; decoding all of the demodulated received RF signals corresponding to all the TV channels simultaneously; and creating the visual program guide as a consolidated view of each of the decoded TV channels, wherein the simultaneous decoding of the demodulated received RF signals significantly reduces a power consumption level and a memory utilization level in the receiver.
Abstract:
An apparatus and method of applying a superfast algorithm to a pilot-based channel estimation process includes receiving a signal comprising information bits transmitted in a wireless channel, executing the pilot-based channel estimation process having p structures for a vector of pilot structures and an upper bound N for a channel spread, determining a result of a matrix inversion of a channel correlation matrix for an error channel estimation offline without performing a matrix inversion, storing pilot information of the received signal for channel recovery in a transform domain, representing the Toeplitz inverse by a FFT representation, detecting and estimating nonzero taps of a channel impulse response of the wireless channel, obtaining a non-structured minimum mean-square-error (MMSE) estimate as a first estimate of locations of the nonzero taps, and replacing the non-structured MMSE estimate by an estimate computed by a tap detection algorithm.
Abstract:
An apparatus and method of applying a fast algorithm to a pilot-based channel estimation process includes receiving, in a receiver, a signal comprising information bits transmitted in a wireless channel, executing a pilot-based channel estimation process running on a decision-directed turbo estimation procedure having a p structure for a vector of pilots and an upper bound N for a channel spread based on a feedback of detected information bits via OFDM, encoding the detected information bits, re-encoding the detected information bits at a decoder output, re-constructing and subtracting an ICI term from the received signal, modulating the detected information bits, estimating channel symbols in a per-carrier basis based on a diagonal matrix of a full matrix involved in the pilot-based channel estimation, and performing training of the wireless channel based on an entire vector of the channel symbols.
Abstract:
A technique for fast common overhead services acquisition for MediaFLO™ mobile multimedia multicast system, wherein encoding overhead information symbol (OIS) information in a first burst of MLC of each superframe, OIS comprises control channel (CC) information and reserved flow data comprising primary flow data, service information data, notification flow data, configuration flow data, and presentation metadata; encoding padding in second MLC burst; encoding parity bytes in third and fourth MLC bursts; encoding primary flow data in final MLC burst per superframe; encoding the remaining reserved flow data at the end of superframe; transmitting wireless data stream comprising first MLC at ½ forward error correction (FEC) rate and receiving it in receiver; determining a correctness of CC information by checking cyclic redundancy check (CRC) bits at the end of each received data packet; and transmitter sending size wise remainder of reserved flows at the end of superframe.
Abstract:
An apparatus, logic, and method of performing timing and frequency estimation in a MediaFLO™ mobile multimedia multicast system comprising a receiver and a transmitter, wherein the method comprises receiving a wireless data stream comprising a MediaFLO™ mobile multimedia multicast system superframe comprising Orthogonal Frequency Division Multiplexing (OFDM) symbols; estimating a Fast Fourier Transform (FFT) trigger point for each of the received OFDM symbols; estimating a fine carrier frequency offset of each OFDM symbol; determining the start of the MediaFLO™ mobile multimedia multicast system superframe by locating a Time Division Multiplexed (TDM) pilot symbol in the superframe; estimating a coarse carrier frequency offset of each of the received OFDM symbols; and synchronizing the receiver to the start of the MediaFLO™ mobile multimedia multicast system superframe and the transmitted OFDM symbols based on the fine carrier frequency offset, the TDM pilot symbol, and the coarse carrier frequency offset.