Abstract:
The present disclosure, for example, relates to one or more techniques for scaling the bandwidth of a carrier. Available sub-channels of an unlicensed radio frequency spectrum band may be determined, and the available sub-channels may be included in the carrier. The available sub-channels may be adjacent or non-adjacent sub-channels. The bandwidth of the carrier may be determined according to which sub-channels are included in the carrier. In this way, the bandwidth of the carrier may be scaled according to the available sub-channels in the unlicensed radio frequency spectrum band.
Abstract:
A device for processing image data is disclosed. The device can obtain a radar point cloud and one or more frames of camera data. The device can determine depth estimates of one or more pixels of the one or more frames of camera data. The device can generate a pseudo lidar point cloud using the depth estimates of the one or more pixels of the one or more frames of camera data, wherein the pseudo lidar point cloud comprises a three-dimensional representation of at least one frame of the one or more frames of camera data. The device can determine one or more object bounding boxes based on the radar point cloud and the pseudo lidar point cloud.
Abstract:
Methods, systems, and devices for wireless communications are described that provide for measurement and recovery of beamformed transmission beams in which an uplink beam and a downlink beam may be decoupled beams that use different beamforming parameters. In the event that a user equipment (UE) detects a failure of the downlink beam, an indication may be provided to a base station, and the downlink beam may be switched to correspond to the uplink beam. In the event that the UE detects a failure of the uplink beam the UE may identify a candidate beam and transmit a beam recovery message to the base station. The downlink beam may have an associated first set of reference signals, and the uplink beam may have an associated second set of reference signals, and beam failure may be determined based on the different sets of reference signals.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may determine, during a multi-slot downlink transmission, that a mapping from a transmission configuration information (TCI) state index to a first TCI state configuration has changed to a second TCI state configuration. The UE may select, based at least in part on the determined change, the first TCI state configuration or the second TCI state configuration to use for at least a portion of the multi-slot downlink transmission. The UE may receive the multi-slot downlink transmission during one or more slots according to the selected TCI state configuration and the TCI state index.
Abstract:
Methods, systems, and devices for wireless communications are described to enable base station and a user equipment (UE) to mitigate interference when using full-duplex communications. For example, a base station communicating with a UE via full-duplex communications may indicate for the UE to align the time of its uplink transmissions with the time the UE receives downlink transmissions. Additionally or alternatively, the base station may indicate a timing alignment window for the UE, where the window may consist of an allowed time period the UE may use to select a time to begin uplink transmissions. In some examples, the base station may select a cyclic prefix for full-duplex communications, where the cyclic prefix may be longer than a cyclic prefix used for other communications. Further, the base station may select uplink frequency and downlink frequency bands separated by a defined guard band for full-duplex communications.
Abstract:
Beam management enhancements for advanced millimeter wave (mmWave) operations are disclosed. As a part of channel state information (CSI) reporting configuration, a user equipment may include an interference plus noise measurement of beams for consideration in beam management. The UE measures a set of signaling resources of each beam for power contribution and interference plus noise. According to the particular configuration, the UE may rank all of the available beams into a subset of the highest ranked beams, ranked either by the interference plus noise measurement, by the power contribution metric, or by a combination of both. The UE reports an identification of the subset to the serving base station which determines the beam to use for subsequent communications with the UE.
Abstract:
In an embodiment, a UE determines QCL information that indicates an association between a spatial parameter and a current transmission configuration, and conveys the determined QCL information to a BS. In another embodiment, a BS transmits a DCI that triggers transmission of a reference signal that includes QCL information that indicates an association between a spatial parameter and a current transmission configuration, whereby any DCI triggering any reference signal that includes any QCL information is configured to trigger a UE to send an express acknowledgment or an implied acknowledgment to that DCI.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine a first hybrid automatic repeat request (HARQ) process identifier set associated with a first configured scheduling process and may determine a second HARQ process identifier set associated with a second configured scheduling process. The UE may assign an HARQ process identifier, included in the first HARQ process identifier set, to a process instance associated with the first configured scheduling process and may assign an HARQ process identifier, included in the second HARQ process identifier set, to a process instance associated with the second configured scheduling process. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive a downlink message that includes a control channel monitoring periodicity and control channel offset for a radio frame. A UE may identify a set of slots within a radio frame to monitor for downlink control information (DCI) based on the received downlink message. The UE may identify a control channel candidate within a search space of each slot of the set of slots, and may identify the control channel candidate of a first slot based on calculations that include a current slot and a previous slot. There may be one or more slots that occur between the previous slot and the current slot. The UE may receive DCI that is user-specific based on the identified control channel candidate.
Abstract:
A base station may make more efficient use of resources by transmitting data in a control region of a slot in addition to a data region. In order to avoid performance loss, the base station may adjust the data transmission in the control region in comparison to a data transmission in a data region and may signal an indication to a UE to assist the UE in receiving the data transmission in the control region. An apparatus for wireless communication at the UE receives the indication from the base station regarding the data transmission in the control region and uses the indication to perform rate matching or demodulation of the data transmission in the control region. The indication may indicate any of a different MCS/rank/TPR, a reduced MCS/rank/TPR, an MCS/rank/TPR delta, a control span for a group of UEs, and a starting symbol for the data transmission. The indication may also indicate that there is no data transmitted on resources in the control region.