摘要:
Techniques for allocating and mapping resources in a wireless communication system are described. The system may use hop-ports to facilitate allocation and use of subcarriers. In one aspect, the hop-ports may be partitioned into multiple subzones, with each subzone including a configurable number of hop-ports. The hop-ports within each subzone may be permuted or shuffled based on a permutation function. After permutation, the hop-ports in all subzones may be mapped to the subcarriers based on local or global hopping. In another aspect, a set of hop-ports may be mapped to a set of subcarriers. A hop-port may be mapped to an unavailable subcarrier and may then be remapped to another available subcarrier. In yet another aspect, a set of hop-ports may be mapped to a set of subcarriers distributed (e.g., evenly) across all subcarriers but avoiding subcarriers in a reserved zone.
摘要:
Systems and methodologies are described that provide support for signal acquisition in wireless communication systems that utilize half-duplex communication in the presence of asynchronous sectors. Forward link and reverse link superframes can be structured such that a given frame position in a superframe alternates between forward link communication and reverse link communication for a particular half-duplex interlace. More particularly, an odd number of frames can be grouped into respective forward link and reverse link superframes, from which frames can be assigned to a first half-duplex interlace and a second half-duplex interlace in an alternating fashion. By varying the communication link used by a half-duplex interlace at a given frame location, terminals operating on a single half-duplex interlace can detect asynchronously operating sectors irrespective of the transmission timeline of such sectors.
摘要:
Interference management is provided through use of a user-based interference control and/or a network-based interference control. For user-based interference control, the terminals are informed of the inter-sector interference observed by the neighbor sectors and can adjust their transmit powers accordingly so that the inter-sector interference is maintained within acceptable levels. For network-based interference control, each sector is informed of the inter-sector interference observed by the neighbor sectors and regulates data transmissions for its terminals such that the inter-sector interference is maintained within acceptable levels. Each system may utilize only user-based interference control, or only network-based interference control, or both.
摘要:
Techniques to flexibly support different bandwidths in a wireless communication system are described. The system supports a configurable operating bandwidth using a fixed design bandwidth and variable guard bands. Values for various parameters such as fast Fourier transform (FFT) size, cyclic prefix length, and sample rate may be selected based on the design bandwidth. The design bandwidth may be associated with K total subcarriers. Different operating bandwidths may be supported by selecting different numbers of usable subcarriers. A transmitter and a receiver may perform processing for a transmission using the same FFT size, cyclic prefix length, and sample rate regardless of the selected operating bandwidth. The system may use different operating bandwidths and/or different parameter values (e.g., FFT sizes) for different portions of a transmission, e.g., a preamble and a main body of the transmission.
摘要:
Enhanced frequency division multiple access (EFDMA) is a multiplexing scheme that sends modulation symbols in the time domain and achieves a lower PAPR than OFDM. An EFDMA symbol occupies multiple subband groups that are spaced apart in a frequency band, with each subband group containing multiple adjacent subbands. To generate an EFDMA symbol, multiple modulation symbols are mapped onto a first sequence of symbols. A transform (e.g., a DFT) is performed on the first sequence to obtain a second sequence of values. The values in the second sequence corresponding to the subbands used for the EFDMA symbol are retained, and the remaining values are zeroed out to obtain a third sequence of values. An inverse transform (e.g., an IDFT) is performed on the third sequence to obtain a fourth sequence of samples. A phase ramp may be applied on the fourth sequence, and a cyclic prefix is appended to form the EFDMA symbol.
摘要:
Systems and methodologies are described that facilitate providing time-division duplexed beam-forming support in traditionally non-time-division duplexed wireless systems, such as an OFDMA system, a WCDMA system, etc. According to an aspect, a base station can analyze pilot information, such as a portion of bandwidth over which a user device is transmitting, and can transmit on the downlink using pre-hopped portion of bandwidth utilized by the user device on the preceding reverse link time slot. The base station can additionally transmit bandwidth segment reassignments to the user device to facilitate bandwidth segment hopping between user devices served by the base station. Additionally, the base station can instruct the user device to provide on-demand pilot information to resolve ambiguity related thereto.
摘要:
A pruned bit-reversal interleaver supports different packet sizes and variable code rates and provides good spreading and puncturing properties. To interleave data, a packet of input data of a first size is received. The packet is extended to a second size that is a power of two, e.g., by appending padding or properly generating write addresses. The extended packet is interleaved in accordance with a bit-reversal interleaver of the second size, which reorders the bits in the extended packet based on their indices. A packet of interleaved data is formed by pruning the output of the bit-reversal interleaver, e.g., by removing the padding or properly generating read addresses. The pruned bit-reversal interleaver may be used in combination with various types of FEC codes such as a Turbo code, a convolutional code, or a low density parity check (LDPC) code.
摘要:
The method and apparatus as described are directed toward techniques and mechanisms to improve efficient wireless network implementation, including obtaining one specification including a center frequency definition, determining, based on the specification, a center frequency of at least one carrier used to operate on the wireless communication system, determining an amount of dithering to add to the center frequency, and setting the center frequency to be multiples of sub-carrier spacing by adding the dithering.
摘要:
Various methods and systems receiving information from an access point over a wireless link in order to reduce processing and/or transmission overhead are disclosed. Such methods and systems may include the processing of a received packet using a descrambling operation on at least a portion of the packet's information based on a MAC-ID associated with an access terminal to produce at least a first processed packet, and determining whether the received packet is targeted to the access terminal based on the first processed packet.
摘要:
In a single-carrier frequency division multiple access (SC-FDMA) system, a receiver receives transmission symbols from a transmitter, determines a set of subbands used by the transmitter, processes the received transmission symbols for the set of subbands, obtains received pilot values for a transmitted pilot, and obtains received data values for transmitted data. The receiver may iteratively perform channel and interference estimation for the transmitter. The receiver selects an initial interference estimate, derives a channel estimate based on the received pilot values and the interference estimate, and derives a new interference estimate based on the received pilot values and the channel estimate. The receiver may repeat the derivation of the channel estimate and the interference estimate for multiple iterations. The receiver then performs data detection and/or receiver spatial processing on the received data values based on the channel estimate and the interference estimate.