Abstract:
The present disclosure provides a method for RLM and a corresponding UE. The method comprises the steps of: determining, by a UE and on a carrier used for RLM, whether a reference signal transmitted by a base station for RLM is received in any subframe; performing RLM based on the reference signal if the reference signal transmitted by the base station is received in any subframe; and, determining, according to a result of RLM, whether link failure is detected. With the solutions, a link state capable of accurately reflecting the actual link quality can be acquired, so that a higher layer of a UE can timely make a decision on link failure or link recovery.
Abstract:
Embodiments of the present disclosure provide a method for transmitting data, including: sensing, by a first device, a scheduling assignment (SA) of another device; measuring a received power of the other device, and measuring a total received energy of a subframe/subband; determining a received power reference value and a total received energy reference value of the other device according to the SA; e selecting resources; and transmitting data using the selected resources. According to the method of the present disclosure, the performance of the method which avoids collision based on SA is improved, and measurement accuracy of the total received energy of the subband is increased. Thus, resource selection/re-selection can be performed better. As such, interferences between devices can be avoided effectively.
Abstract:
The present disclosure provides a method for feeding back HARQ-ACK information. In the method provided by the present disclosure, a UE receives DL-GRANT scheduling downlink HARQ transmission in a time-frequency bundling window corresponding to respective uplink subframe for feeding back HARQ-ACK in turn, obtains a DL DAI in the DL-GRANT, and determines a mapping value of each DL DAI; then, maps bundling window corresponding to respective uplink subframe for feeding back the HARQ-ACK to corresponding bits of a feedback bit sequence according to the mapping value of the DL DAI; and transmits the HARQ-ACK on an available uplink carrier.
Abstract:
The present application discloses a method of determining scheduling of shortened subframes. The method includes: a UE determines a time-frequency position of a candidate PDCCH/EPDCCH which schedules PDSCH/PUSCH of a shortened subframe; the UE performs a pre-determined number of blind detections of the candidate PDCCH/EPDCCH at the time-frequency position. The present application also provides a device. The technical mechanism of the present application can make shortened subframes to function normally, thereby reduce time delay in data transmission.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure provides a power allocating method. A User Equipment (UE) receives power control indication information from a control node, obtains a power control mode, and/or, uplink transmission power configuration information. The UE allocates power for each uplink carrier, based on the power control mode, and/or, the uplink transmission power configuration information. By applying the present disclosure, power waste generated in the following scene may be reduced. A scheduled uplink signal cannot be transmitted in a corresponding carrier due to a busy channel. Subsequently, uplink scheduling efficiency of the UE may be improved, and the whole network efficiency may also be enhanced.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). A method for determining transmitting resources in vehicle to vehicle/pedestrian/infrastructure/network (V2X) communication is provided. The method includes determining, by a user equipment (UE), a set {ti} consisting of configurable V2X subframes within one system frame period, by the UE, determining information about a bitmap for configuring a resource pool, determining, in the set {ti}, subframes belonging to the resource pool, by the UE, selecting, after resource reselection, the position of a resource for initial transmission, determining, in the resource pool, the subframe position of the reserved resource according to a resource reservation subframe interval Prsv and the number of resource reservations, readjusting the position of the reserved resource when a certain condition is satisfied, and transmitting, by the UE, a physical sidelink shared channel (PSSCH) on the determined resource for initial transmission and the reserved resource.
Abstract:
Embodiments of the present disclosure provide a method for communicating data on PDSCH, including: receiving, by a user equipment (UE), configuration information, with which the UE works in a flexible duplex (FD) mode; receiving, by the UE, data of a PDSCH and control data of a physical downlink control channel (PDCCH) or enhanced physical downlink control channel (EPDCCH) indicating downlink (DL) semi-persistent scheduling (SPS) release according to a scheduling mode of the FD mode; and feeding back, by the UE, hybrid automatic repeat request-acknowledge (HARQ-ACK) information according to a corresponding HARQ-ACK timing. An embodiment of the present disclosure may further disclose a user device. With the present disclosure, the UL and DL peak rate of the user may be enhanced and the throughput of the system may be enhanced.
Abstract:
An apparatus and method for feeding back hybrid automatic repeat request-acknowledgement (HARQ-ACK) information are provided. The apparatus and method include user equipment (UE) that first receives a downlink grant (DL-GRANT) which schedules downlink HARQ transmission in a time-frequency bundling window corresponding to an uplink subframe used for feeding back HARQ-ACK, obtains a DL downlink assignment index (DL DAI) in the DL-GRANT, and determines a mapping value of each DL DAI. Then, according to the mapping value of the corresponding DL DAI, the HARQ-ACK bit of each HARQ feedback unit is mapped to a corresponding bit of a feedback bit sequence. According to the method and apparatus provided by the present disclosure, useless HARQ-ACK bits may be effectively removed, and efficiency for feeding back HARQ-ACK may be increased. As such, a downlink peak rate of a UE is ensured.
Abstract:
A method for controlling an uplink (UL) power in a multi-subframe scheduling system is provided. The method includes receiving by a User Equipment (UE), a multi-subframe uplink (UL) scheduling instruction or Physical Downlink Control Channel CHannel (PDCCH) data of a Downlink Control Information (DCI) format 3/3 A of the UE, in a Downlink (DL) subframe where the multi-subframe UL scheduling instruction is transmitted, wherein the multi-subframe UL scheduling instruction or the PDCCH data with DCI format 3/3 A comprises a power controlling command of the PUSCH and determining, by the UE, a transmitting power of the PUSCH of each UL subframe, which is scheduled by the multi-subframe UL scheduling instruction, based on a power controlling command value, and transmitting corresponding PUSCH data based on the transmitting power calculated.
Abstract:
A method and an apparatus are provided for transmitting a hybrid automatic repeat request-acknowledgment/negative acknowledgment (HARQ-ACK/NACK). A first set including at least one HARQ-ACK/NACK timing value is identified. Each timing value indicates a time difference between a downlink time unit for physical downlink shared channel (PDSCH) reception and an uplink time unit in which a HARQ-ACK/NACK feedback is transmitted. A second set is determined that includes at least one downlink time unit. A codebook is generated for the HARQ-ACK/NACK feedback. A size of the codebook is identified based on a size of the second set and a number of HARQ-ACK/NACK bits corresponding to each downlink time unit. The codebook is transmitted to the base station. The number of HARQ-ACK/NACK bits is determined based on a number of code block groups (CBGs) in one transmission block (TB), in case that scheduling for a downlink transmission is based on CBG.