Abstract:
In one embodiment, a method includes sending an electronic invitation to an endpoint associated with a user. The electronic invitation requests that the user attend a conference session to be held at a specified time over a network. A set of filtering rules is then applied to the electronic invitation to select a delegate to attend the conference session in place of the user. Once a delegate has been selected, the electronic invitation is forwarded to the delegate. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.
Abstract:
The capability to suspend a patient alert relating to a monitored physiologic parameters addresses a need to selectively shut off a patient-alert signal or signals during the time a patient is being treated for an excursion in the parameter. Of course, in general a signal call attention to a patient's a potentially deleterious status or condition for which they should seek medical attention. Once a chronically-implanted monitoring device has detected or provided information about the parameter relative to a desired value, trend, or range and a clinician has been notified and intervened the alert signal is temporarily disabled for a predetermined period. That is, once the notification occurs and alert has served its purpose, the alert mechanism is selectively deactivated while the patient ostensibly begins to gradually correct the monitored physiologic parameter under a caregiver's direction and control. After which time, the alert will reactivate.
Abstract:
In one embodiment, a first audio waveform is produced at a first side of a network connection and then encoded and sent by a first endpoint device to a second endpoint device at a second side of the network connection. A second audio waveform is then detected after being played out by the first endpoint device, the second audio waveform having been produced at the second side of the network connection in response to the second endpoint device playing out the first audio waveform. A round-trip delay is then calculating based on a time period measured from output of the first audio waveform to detection of the second audio waveform. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.
Abstract:
A method for indicating the priority of a Voice Over Internet Protocol (VoIP) call includes receiving a dialed number for a connection, generating a call set up request including the dialed number, receiving a priority for the call based on user input provided contemporaneously with the dialed number, generating a priority indicator based on the priority, and transmitting the call setup request and priority indicator to a destination device.
Abstract:
A method and an apparatus for providing layout selection, participant selection, and/or participant-to-participant far end camera control of the selected participant for use in a continuous presence multipoint videoconference. The method includes receiving an FECC message of a set of FECC messages over a packet network from a first participant, the first participant having a set of FEEC modes and being in one of the FECC modes. The method further includes maintaining knowledge of the mode of the first participant and interpreting the received FECC message according to the FECC mode of the first participant. Depending on the FECC mode of the first participant, the interpreted FECC message, and the set of controls provided by the method (layout selection and/or participant selection to select a participant and/or participant-to-participant camera control), the method further includes one of changing the FECC mode of the first participant, forming a layout for the first participant, selecting a participant for the first participant, or carrying out participant-to-participant camera control of a previously selected participant.
Abstract:
A method for managing calls of an automatic call distributor includes receiving a call from a user over a first connection with a first endpoint of the user. The call comprises a request for service. The method includes obtaining presence information of the user and associating the call with the presence information. The method includes placing the call in a queue until a suitable agent becomes available to provide the service to the user. A virtual contact is established to hold a place of the call in an order in the queue if the first connection is terminated. The method also includes establishing a second connection with the user and detecting the presence of the user associated with the second connection. The method includes associating the second connection with the virtual contact using the detected presence of the user.
Abstract:
Disclosed is an active or dynamic RFID tag that actively provides current status information regarding a particular item, as well as mechanisms for recognizing dynamic RFID information read from such RFID tag. Static identifying information regarding the particular item is provided either by the same active/dynamic RFID tag or by a different passive RFID tag. While the RFID tag may passively or actively provide general identification, the RFID actively provides status information that corresponds to changes in the corresponding item's status. In a first implementation, active RFID tags are positioned next to one or more components within a system so that each active RFID tag is powered and transmitting its RFID information when its corresponding component is operational. In contrast, each active RFID tag is positioned so that it is not powered and not transmitting its RFID information when its component is failing. Accordingly, an RFID reader can then know when a system has a failing component when a one of the component's corresponding active RFID tag is not transmitting its RFID information. In this first implementation, the active RFID either transmits or fails to transmit based on its component's status state. In a second implementation, a dynamic RFID is associated with a specific component, set of components, or system, and the dynamic RFID tag dynamically provides an RFID reader with RFID information that changes with its associated item's changing status state. The status state may correspond to any suitable parameter of the item or product that can change over time. Thus, the dynamic RFID provides different transmission frequencies based on different status states of its component or system.
Abstract:
A method for granting access to secure information includes receiving from a caller a call for connection with one of a plurality of agents, distributing the call to the agent of the plurality of agents, initiating an active communication session between the caller and the agent for handling the call, and granting to the agent access to the secure caller information using a plurality of access authentication information that includes an active communication session between the caller and the agent.
Abstract:
The present invention includes methods and devices for providing. According to some implementations, radio frequency identification (“RFID”) tags are positioned at various locations throughout a building. Building locations can be determined from the RFID tags. Emergency service providers may be equipped with a portable device that includes at least one RFID reader for reading the RFID tags. Some implementations involve transmitting the RFID tag data to a control center from which the emergency services are coordinated. The emergency service workers' current and prior locations can be determined by the portable devices and/or at the control center. In preferred implementations, emergency service provider location information can be provided to control center personnel and to emergency service providers in real time.
Abstract:
Disclosed are video conferencing systems, devices, architectures, and methods for transcoding, transrating, and the like, to facilitate video streaming in a distributed arrangement. An exemplary translator in accordance with embodiments can include: an input configured to receive a first video stream in a first format, the first video stream being from a first media switch, the first media switch being associated with a first stream group having one or more first endpoints; and an output configured to provide a second video stream in a second format, the second video stream being sent to a second media switch, the second media switch being associated with a second stream group having one or more second endpoints, whereby the translator is configured to convert from the first to the second format. Further, the translator can be configured as a logical endpoint where a first interface having an input/output pair uses the first format and a second interface having another input/output pair uses the second format. The two formats may differ in at least one characteristic.