Abstract:
A system for navigating includes an interface operable to receive position information of a first modality. The position information of the first modality is associated with a navigation unit. The interface is further operable to receive position information of a second modality. The position information of the second modality is associated with the navigation unit. The system also includes a processor coupled to the interface and operable to identify a destination. The system is further operable to navigate to the destination based on the position information of the first and second modalities by switching between the first modality and the second modality.
Abstract:
Methods and apparatuses for secure pairing are disclosed. In one example, a pairing surrogate is utilized to issue a pairing token to a first device and a second device to be paired.
Abstract:
Techniques are provided for using a location of a caller placing a call that is received at a call center to identify other sources of information that are relevant to the call. A call is received at a call center from a caller. The location of the caller is obtained from the received call, and other sources of information potentially relevant to the call are identified based on the location of the caller. For example, information is stored that identifies at lease one individual that is proximate to the location of the caller, and communication is initiated with at least one individual who is determined to be located proximate to the caller.
Abstract:
In one embodiment, an apparatus includes a first module that causes the first endpoint to receive a current speaker's video stream if the first endpoint is not the current speaker and to receive a last speaker's video stream if the first endpoint is the current speaker. The apparatus includes a second module that causes the second endpoint to receive a continuous presence, current speaker video stream if the second endpoint is not the current speaker and to receive a continuous presence, last speaker video stream if the second endpoint is the current speaker. The continuous presence, current speaker video stream comprises two or more video streams, one of which includes at least a portion of the current speaker's video stream. The continuous presence, last speaker video stream comprises two or more video streams, one of which includes at least a portion of a last speaker's video stream.
Abstract:
A method, an apparatus and a medium encoded with instructions for providing layout selection, participant selection, and/or participant-to-participant far end camera control of the selected participant for use in a continuous presence multipoint videoconference. The method includes receiving one or more far end camera control messages over a packet network from a first participant of a multipoint videoconference; maintaining an indication of a far end camera control mode for the first participant, the mode being one of a set of modes; and depending on the far end camera control mode and on controls possible, carrying out a control according to one ore more the camera control messages.
Abstract:
Described in example embodiments herein are techniques that combine at least two network (communication) technologies (such as protocols, signaling methods, etc.) and limit when a wireless device employs one of the technologies. In an example embodiment, a passive technology, such as a Radio Frequency Identification (RFID) technology, can be employed to determine whether a certain network technology is available.
Abstract:
Described in example embodiments herein are techniques that combine at least two network (communication) technologies (such as protocols, signaling methods, etc.) and limit when a wireless device employs one of the technologies. In an example embodiment, a passive technology, such as a Radio Frequency Identification (RFID) technology, can be employed to determine whether a certain network technology is available.
Abstract:
A system and method that provides a user with the ability to transmit confidential information to an IVR system in a secure manner includes invoking an interactive voice response (IVR) routine, the IVR routine determining each of the digits in the sequence by making successive queries and/or digit guesses. A user of the voice communication device need only make an affirmative response or a negative response to each query or digit quess. Once determined, each of the digits in the sequence is sent to the destination system. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
In one embodiment, an apparatus includes a first module that causes the first endpoint to receive a current speaker's video stream if the first endpoint is not the current speaker and to receive a last speaker's video stream if the first endpoint is the current speaker. The apparatus includes a second module that causes the second endpoint to receive a continuous presence, current speaker video stream if the second endpoint is not the current speaker and to receive a continuous presence, last speaker video stream if the second endpoint is the current speaker. The continuous presence, current speaker video stream comprises two or more video streams, one of which includes at least a portion of the current speaker's video stream. The continuous presence, last speaker video stream comprises two or more video streams, one of which includes at least a portion of a last speaker's video stream.
Abstract:
A medical device performs a method for determining a cardiac event by obtaining a signal comprising cardiac cycle length information in a patient and determining cardiac cycle lengths during an established time interval. Noise is detected during the time interval and a cardiac cycle length corresponding to a time of the detected noise is rejected. Cycle length differences are determined from the cycle lengths not rejected during the time interval. The cardiac event is determined in response to the cycle length differences.