Abstract:
A dual-node capacitor coupling technique is used to lower the trigger voltage and to improve the uniform turn-on of a multi-finger MOSFET transistor. Preferably, each MOSFET is an NMOS device. Specifically, each NMOS device includes a capacitor that is connected between the gate of the NMOS device and the pad terminal. A first resistor is connected between the gate and the p-well, while a second resistor is connected between the p-well and the grounded source. For a positive ESD pulse to VSS, the p-well is pulled up to approximately 0.7 V during the initial ESD event, such that the source junction is forward biased and that the trigger voltage of the NMOS device is lowered. At the same time, the gate voltage is coupled within the range of approximately 1 to 2 V to promote the uniform turn on of the gate fingers of the NMOS devices during the initial ESD event.
Abstract:
A MOSFET structure for an ESD protection circuit in a semiconductor IC device having segmented diffusion regions. The transistor includes a gate having an extended strip-shaped structure formed on the substrate of the IC device. A well region is formed in the substrate on a first side of the gate structure. A first drain diffusion region is formed in the well region, and a second drain diffusion region is formed partially inside the well region. A source diffusion region is formed in the substrate along a second side of the gate structure, opposing the first side. A field oxide layer is formed over the surface of the substrate, the field oxide layer comprises a number of finger-shaped extensions originating from the drain side of the transistor and extending into the source side of the transistor. The finger-shaped extensions divide the second drain diffusion region into a number of parallel-aligned segmented diffusion regions.
Abstract:
A position detector for a scanning beam comprising a plurality of rows of spaced apart sensors. Each row of sensors includes a plurality of logic zero sensors and a plurality of logic one sensors which are arranged in alternating logic order. Each row is arranged such that it is symmetrical about its center. Equal areas of logic zero sensors on each side of the center are equal distances away from the center and equal areas of logic one sensors on each side of the center are equal distances away from the center to substantially cancel out any background light effects on the sensors.
Abstract:
The present invention consists of a photocell array to determine the cross-scan position of a laser beam. The array consists of multiple rows of elongated photocells oriented perpendicular to the main scan direction of the laser beam with each row of photocells representing one bit of data. Furthermore, each row consists of alternating types of photocells, one type representing a logic 1 and the other type representing a logic 0. As the laser beam crosses this array, it energizes certain photocells on each row such that its output is a binary number that identifies the position at which the laser beam crosses the array. To improve the accuracy of the binary output, the pitch between the photocells of each row should not be reduced to less than 1/4 of the width of the laser beam. If greater accuracy is needed, the photocells should be offset while keeping the pitch between the photocells constant at a pitch not less than 1/4 of the width of the laser beam.
Abstract:
A vehicle carries a variable inertia flywheel which is mechanically connected to the road wheels of the vehicle. Change of inertia of the flywheel influences the motion of the vehicle in acceleration, deceleration, swerving.