摘要:
An electron emission element (1) includes an electrode substrate (2) and a thin film electrode (3), and emits electrons from the thin film electrode (3) by voltage application across the electrode substrate (2) and the thin film electrode (3). An electron accelerating layer (4) containing at least insulating fine particles (5) is provided between the electrode substrate (2) and the thin film electrode (3). The electrode substrate (2) has a convexoconcave surface. The thin film electrode (3) has openings (6) above convex parts of the electrode substrate (2).
摘要:
The present invention provides an electron emitting element, comprising: a first electrode; an insulating fine particle layer formed on the first electrode and composed of insulating fine particles; and a second electrode formed on the insulating fine particle layer, wherein the insulating fine particles are monodisperse fine particles, and when voltage is applied between the first electrode and the second electrode, electrons are discharged from the first electrode into the insulating fine particle layer and accelerated through the insulating fine particle layer to be emitted from the second electrode.
摘要:
An electron emitting element includes an electrode substrate, a thin-film electrode, and an electron acceleration layer provided between them. The electron acceleration layer includes a fine particle layer containing insulating fine particles, which is provided on a side of the electrode substrate, and a deposition of conductive fine particles, which is provided on a surface of the fine particle layer. In the electron acceleration layer, a conductive path is formed in advance, and the deposition has a physical recess which is an exit of the conductive path and which serves as an electron emitting section. Electrons are emitted via the electron emitting section. With the arrangement, it is possible to realize an electron emitting element which prevents that an electrode on an electron emission side gradually wears off along with electron emission and which can maintain an electron emission characteristic for a long period.
摘要:
According to an electron emitting element of the present invention, an electron acceleration layer sandwiched between an electrode substrate and a thin-film electrode contains (i) insulating fine particles and (ii) at least one of (a) conductive fine particles having an average particle diameter smaller than an average particle diameter of the insulating fine particles and (b) a basic dispersant. The electron acceleration layer has a surface roughness of 0.2 μm or less in centerline average roughness (Ra). The thin-film electrode has a film thickness of 100 nm or less. As such, according to the electron emitting element of the present invention, it is possible to reduce the thickness of the thin-film electrode to an appropriate thickness. Accordingly, it is possible to increase electron emission.
摘要:
The present invention provides an electron emitting element which has good energy efficiency and which is capable of controlling a value of current flowing in an electron acceleration layer and an amount of emitted electrons by adjusting a resistance value of the electron acceleration layer and an amount of generated ballistic electrons. An electron emitting element 1 includes an electron acceleration layer 4 including a fine particle layer containing insulating fine particles. In the electron emitting element 1, Ie=α·R−0.67 where Ie [A/cm2] is electron emission current per unit area during the voltage application and R is element resistance [Ω·cm2] per unit area, the element resistance being obtained by dividing (a) a voltage applied between the electrode substrate 2 and the thin-film electrode 3 during the voltage application by (b) current in element per unit area which current flows between the electrode substrate 2 and the thin-film electrode 3 during the voltage application, and where α is not less than 2.0×10−6, and the electron emission current Ie is not less than 1.0×10−9.
摘要:
The present invention provides an electron emitting element, comprising: a first electrode; an insulating fine particle layer formed on the first electrode; and comprising first insulating fine particles and second insulating fine particles larger than the first insulating fine particles, a surface of the insulating fine particle layer having a projection formed from the second insulating fine particles, and a second electrode formed on the insulating fine particle layer, wherein when a voltage is applied between the first electrode and the second electrode, electrons provided from the first electrode are accelerated in the insulating fine particle layer to be emitted from the second electrode via the projection.
摘要:
An electron emitting element includes an electrode substrate, a thin-film electrode, and an electron acceleration layer provided between them. The electron acceleration layer includes a fine particle layer containing insulating fine particles, which is provided on a side of the electrode substrate, and a deposition of conductive fine particles, which is provided on a surface of the fine particle layer. In the electron acceleration layer, a conductive path is formed in advance, and the deposition has a physical recess which is an exit of the conductive path and which serves as an electron emitting section. Electrons are emitted via the electron emitting section. With the arrangement, it is possible to realize an electron emitting element which prevents that an electrode on an electron emission side gradually wears off along with electron emission and which can maintain an electron emission characteristic for a long period.
摘要:
A heat exchanger (1) includes: a heat sink (3) which is in contact with a heating element (2); and an electron emitting element (4) which is provided so as to be separated from the heat sink (3) by a space and which provides electrons to the heat sink (3) via air in the space. The electron emitting element (4) includes: an electrode substrate (7); a thin-film electrode (9); a power supply (10) which applies a voltage between the electrode substrate (7) and the thin-film electrode (8); and an electron acceleration layer (8) which accelerates the electrons inside itself in response to the voltage applied by the power supply (10) so that the electrons are emitted from the thin-film electrode (9). The electron acceleration layer (8) is made at least partially of an insulating material. As a result, the heat exchanger (1) has a heat exchange capability which can be maintained and improved independently of a structure in which electric field concentration tends to occur.
摘要:
The present invention provides an electron emitting element which has good energy efficiency and which is capable of controlling a value of current flowing in an electron acceleration layer and an amount of emitted electrons by adjusting a resistance value of the electron acceleration layer and an amount of generated ballistic electrons. An electron emitting element 1 includes an electron acceleration layer 4 including a fine particle layer containing insulating fine particles. In the electron emitting element 1, Ie=α·R−0.67 where Ie [A/cm2] is electron emission current per unit area during the voltage application and R is element resistance [Ω·cm2] per unit area, the element resistance being obtained by dividing (a) a voltage applied between the electrode substrate 2 and the thin-film electrode 3 during the voltage application by (b) current in element per unit area which current flows between the electrode substrate 2 and the thin-film electrode 3 during the voltage application, and where α is not less than 2.0×10−6, and the electron emission current Ie is not less than 1.0×10−9.
摘要:
According to an electron emitting element of the present invention, an electron acceleration layer sandwiched between an electrode substrate and a thin-film electrode contains (i) insulating fine particles and (ii) at least one of (a) conductive fine particles having an average particle diameter smaller than an average particle diameter of the insulating fine particles and (b) a basic dispersant. The electron acceleration layer has a surface roughness of 0.2 μm or less in centerline average roughness (Ra). The thin-film electrode has a film thickness of 100 nm or less. As such, according to the electron emitting element of the present invention, it is possible to reduce the thickness of the thin-film electrode to an appropriate thickness. Accordingly, it is possible to increase electron emission.