Abstract:
An electron emitting device (100) includes a first electrode (12), a second electrode (52), and a semi-conductive layer (30) provided between the first electrode (12) and the second electrode (52). The semi-conductive layer (30) includes a porous alumina layer (32) having a plurality of pores (34) and silver (42) supported in the plurality of pores (34) of the porous alumina layer (32).
Abstract:
An electron emission source includes a first electrode, a semiconductor layer, an insulating layer, and a second electrode stacked in that sequence, wherein an electron collection layer is sandwiched between the semiconductor layer and the insulating layer, the electron collection layer is in contact with the semiconductor layer and the insulating layer, and the electron collection layer is a conductive layer to collect electrons.
Abstract:
An emitter for an electron-beam projection lithography (EPL) system and a manufacturing method therefor are provided. The electron-beam emitter includes a substrate, an insulating layer overlying the substrate, and a gate electrode including a base layer formed on top of the insulating layer to a uniform thickness and an electron-beam blocking layer formed on the base layer in a predetermined pattern. The manufacturing method includes steps of: preparing a substrate; forming an insulating layer on the substrate; forming a base layer of a gate electrode by depositing a conductive metal on the insulating layer to a predetermined thickness; forming an electron-beam blocking layer of the gate electrode by depositing a metal capable of anodizing on the base layer to a predetermined thickness; and patterning the electron-beam blocking layer in a predetermined pattern by anodizing. The emitter provides a uniform electric field within the insulating layer and simplify the manufacturing method therefor.
Abstract:
A ballistic electron surface-emitting device (BSD) emitter that can be used in a field emission display (FED). The emitter being made of metallic carbon nanotubes extending in a direction that is normal to a surface of the cathode. The carbon nanotubes are designed so that electrons therein can experience a ballistic effect where the mean free path between collisions is as large or larger than a length of the carbon nanotube and that the width of the carbon nanotube being a fermi wavelength. On an opposite end of the carbon nanotubes is a thin metal electrode layer and a thin insulating layer to protect the carbon nanotubes from damage.
Abstract:
Metal-insulator-metal planar electron emitters (PEES) have potential for use in advanced lithography for future generations of semiconductor devices. The PEE has, however, a limited lifetime, which restricts its commercial applicability. It is believed that the limited lifetime of the PEE is limited by in-diffusion of metal ions from the anode. The in-diffusion may be countered in a number of different ways. One way is to cool the PEE to temperatures below room temperature. This lowers the metal ion mobility, and so the metal ions are less likely to diffuse into the insulator layer. Another way is to occasionally reverse the electrical potential across the PEE from the polarity used to generate the electron beam. This counteracts the electrical driving force that drives the positively charged metal ions from the PEE anode to the PEE cathode.
Abstract:
An electron emitter includes a lower electrode formed on a glass substrate, an emitter section made of dielectric film formed on the lower electrode, and an upper electrode formed on the emitter section. A drive voltage for electron emission is applied between the upper electrode and the lower electrode. At least the upper electrode has a plurality of through regions through which the emitter section is exposed. The upper electrode has a surface which faces the emitter section in peripheral portions of the through regions and which is spaced from the emitter section.
Abstract:
An electron emission device exhibits a high electron emission efficiency. The device includes an electron supply layer of metal or semiconductor, an insulator layer formed on the electron supply layer, and a thin-film metal electrode formed on the insulator layer. The insulator layer is made of a dielectric substance and has a film thickness of 50 nm or greater. When an electric field is applied between the electron supply layer and the thin-film metal electrode, the electron emission device emits electrons.
Abstract:
An electron emission device includes: a semiconductor layer; a porous semiconductor; and a thin-film metal electrode which are layered in turn. The electrode faces a vacuum space. The porous semiconductor layer has at least two or more of porosity-changed layers which have porosities which are different from each other in the thickness direction. The electron emission device emits electrons when an electric field is applied between the semiconductor layer and the thin-film metal electrode. An insulator layer made of a material selected from silicon oxide or silicon nitride may be formed between the porous semiconductor layer and the thin-film metal electrode. Si skeletons of the porous semiconductor layer are oxidized or nitrided.
Abstract:
A mask for corpuscular lithography permits a short exposure time for generating structures on semiconductor wafers, and provides a cost reduction of such structure generation. The mask has a tunnel cathode in corpuscle-emitting regions.