Abstract:
A digital image capturing and processing system comprising a plurality of coplanar illumination and imaging subsystem for producing a plurality of coplanar linear illumination and imaging planes which intersect within a 3D imaging volume defined relative to an imaging window. Each coplanar illumination and imaging subsystem includes a local object motion detection subsystem for detecting the motion of objects moving through the 3D imaging volume, and a local control subsystem for controlling the state of operations within each coplanar illumination and imaging station during system operation. Each coplanar illumination and imaging subsystem has an object detection state and a code symbol reading state of operation, and includes one or more planar illumination modules (PLIMs) for producing at least one substantially planar illumination beam (PLIB), and a linear image detection array having a field of view (FOV) on the linear image detection array and extending in substantially the same plane as the PLIB, to provide a coplanar illumination and imaging plane (PLIB/FOV) that is projected through the 3D imaging volume, for capturing linear (1D) digital images of an object passing therethrough, for subsequent processing and recognition of information graphically represented in the linear digital images. When a local object motion detection subsystem automatically detects the motion of an object passing through at least a portion of the 3D imaging volume, a global control subsystem cooperates with the local control subsystems to manage the state of operation of each coplanar illumination and imaging subsystem, e.g. by driving one or more of coplanar illumination and imaging subsystems into the code symbol reading state of operation.
Abstract:
A method of and system for identifying a consumer product in a retail store environment when a bar code symbol on a product is not readable or has been removed from the product's packaging. The system comprises a database system, and a digital image capturing and processing system installed in the retail environment and in data communication with the database system. The digital image capturing and processing system is capable of capturing one or more digital images for each consumer product sold in the retail store environment, and storing the digital images in the database subsystem, along with product identifying information for each consumer product. When the imaged bar code symbol happens to be unreadable, or when the bar code symbol label happens to have fallen off or have been removed from the packaging, then one or more digital images of the consumer product are compared with digital images stored in the database subsystem to identify the consumer product graphically represented in the digital images.
Abstract:
A POS-based digital image capturing and processing system for illuminating objects using automatic object detection and spectral-mixing illumination technique. The system comprises a coplanar illumination and imaging station for projecting at least one coplanar illumination and imaging plane into an imaging volume during object illumination and imaging operations. The coplanar illumination and imaging station includes an illumination subsystem for producing a first field of visible illumination from an array of visible VLDs, and producing a second field of invisible illumination from an array of infrared (IR) laser diodes (IR-LDs). Wherein the first and second fields of illumination spatially overlap and intermix with each other and are substantially coplanar with the FOV of the linear image sensing array. An automatic object detection subsystem automatically detects an object moving through the imaging volume, while an illumination control subsystem controls the relative power ratio (VIS/IR) of visible illumination and invisible illumination during system operation so as to minimize the amount of visible illumination energy required to capture sufficiently high-contrast images of said objects and successfully process the same.
Abstract:
An automatic digital-imaging based code symbol reading system supporting a presentation mode of system operation, automatic object direction detection and illumination control, and video image capture and processing techniques. By virtue of the present invention, the automatic digital-imaging based code symbol reading system ensures the reliable reading of code symbols graphically represented in digital images, in high-throughput point-of-sale and other environments.
Abstract:
A digital image capture and processing system employing automated real-time analysis of digital image exposure quality to automatically reconfigure system control parameters, and dynamically control illumination and imaging operations within the digital image capture and processing system.
Abstract:
An omni-directional digital image capturing and processing system comprising a plurality of coplanar illumination and imaging stations for producing a plurality of coplanar linear illumination and imaging planes which intersect within a 3D imaging volume. Each coplanar illumination and imaging station includes a linear image detection array, a linear illumination array, and an object motion and velocity detection subsystem for automatically detecting the motion and velocity of an object that passes through at least a portion of one coplanar linear illumination and imaging plane, and automatically adjusting one or more parameters relating to the exposure and/or illumination control within the coplanar illumination and imaging station. By virtue of the present invention, it is possible to capture and process high quality digital images of objects passed through 3D imaging volumes, at point-of-sale (POS) retail stations and like environments.
Abstract:
A digital image capturing and processing system comprising a plurality of coplanar illumination and imaging stations for producing a plurality of coplanar linear illumination and imaging planes which intersect within a 3D imaging volume defined relative to an imaging window. Each station includes an array of planar illumination modules (PLIMs) for producing at least one substantially planar illumination beam (PLIB), and a linear image detection array having a field of view (FOV) on the linear image detection array and extending in substantially the same plane as the PLIB, to provide a coplanar illumination and imaging plane (PLIB/FOV). The PLIB/FOV is projected through the 3D imaging volume, for capturing linear (1D) digital images of an object passing therethrough, for subsequent processing and recognition of information graphically represented in the linear digital images. Each station also employs a local control subsystem for controlling at least one illumination parameter associated with the production of the PLIB, in response to the motion and velocity of objects detected within the 3D imaging volume during system operation. By virtue of the present invention, it is possible to optimally illuminate objects based on the velocity at which such objects pass through the 3D imaging volume, at point-of-sale (POS) stations and like retail environments. Such illumination control ensures the capture of high quality digital images of objects, resulting in improved image processing.
Abstract:
A digital illumination and imaging system employing one or more planar laser illumination modules (PLIMs) each including: (i) a laser illumination source driven preferably by high frequency modulated (HFM) diode current drive circuitry; (ii) a beam collimating optics disposed beyond the laser source; (ii) an optical beam multiplexer (OMUX) device disposed beyond the collimating optics; and (iv) a planarizing-type illumination lens array disposed beyond the OMUX device, and arranged for generating a plurality of substantially planar coherence-reduced laser illumination beams (PLIBs) that form a composite substantially planar laser illumination beam (PLIB) having substantially reduced spatial/temporal coherence. A digital image detection array for detecting digital images of an object illuminated by the composite substantially planar laser illumination beam. By virtue of the present invention, the power of speckle pattern noise, observed in a digital image of an object detected at the digital image detection array, is substantially reduced when the digital image is formed using the substantially planar laser illumination beam.
Abstract:
A method of driving a plurality of visible and invisible laser diodes so as to produce an illumination beam having a dynamically managed ratio of visible to invisible (IR) spectral energy/power during object illumination and imaging operations. The method involves supplying a plurality of visible laser and invisible laser diodes with a predetermined/default values of diode drive currents so as to illuminate the object with a spectral mixture of illumination during object illumination and imaging operations. One or more digital images of the illuminated object are captured and the image contrast quality thereof is measured, in real-time, so as to generate feedback or control data. This feedback or control data is used to dynamically generate the necessary values for the adjusted diode drive currents that are used to drive the visible and invisible laser diodes and produce an illumination beam having a dynamically managed ratio of visible to invisible (IR) spectral energy/power required to produce images of sufficient image contrast to ensure satisfactory image processing, while minimizing visual brightness to humans, at a POS station during object illumination and imaging operations.
Abstract:
A method of illuminating objects using adaptively controlled mixing of spectral illumination energy to form and detect digital images of objects at POS environments with sufficiently high image contrast and quality. The method comprises provides, at a POS environment, a digital image capture and processing system having a system housing with an imaging window, and an area-type illumination and imaging station disposed within said system housing, for projecting a coextensive area-type illumination and imaging field (i.e. zone) through said imaging window into a 3D imaging volume during object illumination and imaging operations. As the object is moved through the 3D imaging volume, its motion is automatically detected, and signals indicative of said detected object motion are generated. In response to the generated signals, a first field of visible illumination is produced from an array of visible LEDs, simultaneously with a second field of invisible illumination from a array of infrared (IR) LEDs. These first and second fields of illumination spatially overlap and intermix with each other and are substantially coextensive with the FOV. During object illumination and imaging operations, the relative power ratio (VIS/IR) of these fields of visible illumination and invisible illumination are controlled as one or more digital images of said illuminated object are formed and detected, captured and buffered, and ultimately processed so as to read one or more 1D and/or 2D code symbols graphically represented in the digital images. During object illumination and imaging operations operation, the relative power ratio (VIS/IR) is adaptively controlled to form and detect digital images of objects at POS environments with sufficiently high image contrast and quality.