SYSTEMS AND METHODS FOR MACHINE PERCEPTION

    公开(公告)号:US20210011154A1

    公开(公告)日:2021-01-14

    申请号:US16790592

    申请日:2020-02-13

    Abstract: A system to determine a position of one or more objects includes a transmitter to emit a beam of photons to sequentially illuminate regions of one or more objects; multiple cameras that are spaced-apart with each camera having an array of pixels to detect photons; and one or more processor devices that execute stored instructions to perform actions of a method, including: directing the transmitter to sequentially illuminate regions of one or more objects with the beam of photons; for each of the regions, receiving, from the cameras, an array position of each pixel that detected photons of the beam reflected or scattered by the region of the one or more objects; and, for each of the regions detected by the cameras, determining a position of the regions using the received array positions of the pixels that detected the photons of the beam reflected or scattered by that region.

    Scan mirror systems and methods
    72.
    发明授权

    公开(公告)号:US10473921B2

    公开(公告)日:2019-11-12

    申请号:US15976269

    申请日:2018-05-10

    Abstract: A system to scan a field of view with light beams can include a scanning mirror arrangement having a mirror and a drive mechanism configured to rotate the mirror about an axis between two terminal positions; at least one light source configured to simultaneously produce at least a first light beam and a second light beam directed at the mirror from different directions. Upon rotation of the mirror, the first and second light beams can scan a field of view.Another example of a scanning mirror arrangement includes a mirror; hinges attached at opposite sides of the mirror; and a drive mechanism attached to the hinges and configured to twist the hinges resulting in a larger twist to the mirror, wherein the hinges are disposed between the drive mechanism and the mirror.

    THREE-DIMENSIONAL TRIANGULATION AND TIME-OF-FLIGHT BASED TRACKING SYSTEMS AND METHODS

    公开(公告)号:US20190302264A1

    公开(公告)日:2019-10-03

    申请号:US16443702

    申请日:2019-06-17

    Abstract: A three-dimension position tracking system is presented. The system includes transmitters and receivers. A transmitter scans continuous or pulsed coherent light beams across a target. The receiver detects the reflected beams. The system recursively determines the location of the target, as a function of time, via triangulation and observation of the time-of-flight of the incoming and outgoing beams. The transmitter includes ultra-fast scanning optics to scan the receiver's field-of-view. The receiver includes arrays of ultra-fast photosensitive pixels. The system determines the angles of the incoming beams based on the line-of-sight of the triggered pixels. By observing the incoming angles and correlating timestamps associated with the outgoing and incoming beams, the system accurately, and in near real-time, determines the location of the target. By combining the geometry of the scattered beams, as well as the beams' time-of-flight, ambiguities inherent to triangulation and ambiguities inherent to time-of-flight location methods are resolved.

    Hyper-resolved, high bandwidth scanned LIDAR systems

    公开(公告)号:US10379220B1

    公开(公告)日:2019-08-13

    申请号:US16261528

    申请日:2019-01-29

    Abstract: Embodiments are directed toward a scanning LIDAR system that measures a distance to a target that reflects light from a transmitter to a receiver. A light transmitter is arranged to scan pulses of light that reflect off a remote surface (target) and illuminate fractions of the Field of View (FoV) of a receiver, such as a camera. These fractions of the FoV are smaller than a resolution provided by an array of pixels used to detect Time of Flight (ToF) reflections of the scanned pulses of light from a remote surface. The exemplary scanning LIDAR system may resolve an image of the remote surface at substantially higher resolution than the pixel resolution provided by its receiver.

    Machine vision for ego-motion, segmenting, and classifying objects

    公开(公告)号:US10325376B2

    公开(公告)日:2019-06-18

    申请号:US16223043

    申请日:2018-12-17

    Abstract: Systems and methods for machine vision are presented. Such machine vision includes ego-motion, as well as the segmentation and/or classification of image data of one or more targets of interest. The projection and detection of scanning light beams that generate a pattern are employed. Real-time continuous and accurate spatial-temporal 3D sensing is achieved. The relative motion between an observer and a projection surface is determined. A combination of visible and non-visible patterns, as well as a combination of visible and non-visible sensor arrays is employed to sense 3D coordinates of target features, as well as acquire color image data to generate 3D color images of targets. Stereoscopic pairs of cameras are employed to generate 3D image data. Such cameras are dynamically aligned and calibrated. Information may be encoded in the transmitted patterns. The information is decoded upon detection of the pattern and employed to determine features of the reflecting surface.

    Machine vision for ego-motion, segmenting, and classifying objects

    公开(公告)号:US10043282B2

    公开(公告)日:2018-08-07

    申请号:US15098285

    申请日:2016-04-13

    Abstract: Systems and methods for machine vision are presented. Such machine vision includes ego-motion, as well as the segmentation and/or classification of image data of one or more targets of interest. The projection and detection of scanning light beams that generate a pattern are employed. Real-time continuous and accurate spatial-temporal 3D sensing is achieved. The relative motion between an observer and a projection surface is determined. A combination of visible and non-visible patterns, as well as a combination of visible and non-visible sensor arrays is employed to sense 3D coordinates of target features, as well as acquire color image data to generate 3D color images of targets. Stereoscopic pairs of cameras are employed to generate 3D image data. Such cameras are dynamically aligned and calibrated. Information may be encoded in the transmitted patterns. The information is decoded upon detection of the pattern and employed to determine features of the reflecting surface.

    SYSTEMS AND METHODS FOR MACHINE PERCEPTION
    79.
    发明申请

    公开(公告)号:US20180180733A1

    公开(公告)日:2018-06-28

    申请号:US15853783

    申请日:2017-12-23

    Abstract: A system to determine a position of one or more objects includes a transmitter to emit a beam of photons to sequentially illuminate regions of one or more objects; multiple cameras that are spaced-apart with each camera having an array of pixels to detect photons; and one or more processor devices that execute stored instructions to perform actions of a method, including: directing the transmitter to sequentially illuminate regions of one or more objects with the beam of photons; for each of the regions, receiving, from the cameras, an array position of each pixel that detected photons of the beam reflected or scattered by the region of the one or more objects; and, for each of the regions detected by the cameras, determining a position of the regions using the received array positions of the pixels that detected the photons of the beam reflected or scattered by that region.

Patent Agency Ranking