Abstract:
The present invention relates to encoding and decoding of information using materials that are mildly absorbing radiation over a wide range of infrared wavelengths and substantially non-absorbing in the visible wavelengths. Examples of such encoding of information are bar codes and area markings. Information is encoded in markings on a base medium by depositing or intertexturing on the base medium a material where the surface dimensions, thickness and presence of the material contain the encoded information. The encoding utilizes a lower cost, more stable material than a material that is highly absorbing over a range of infrared wavelengths and substantially non-absorbing in the visible wavelengths. However, since the material is mildly absorbing in the infrared range, the signal obtained by reflecting or transmitting infrared radiation from the markings will be less distinct. Thus, inventive methods are needed to ensure that the encoded information can be decoded. Two different approaches are disclosed; (a) detecting the absorption spectrum and comparing to the known spectrum of the material in order to detect the presence and surface dimensions of the material and (b) utilizing techniques to improve the signal-to-noise such as restricting the range of wavelengths, matched filters and narrowing the bandwidth.
Abstract:
The present invention relates to encoding and decoding of information using materials that are capable of mildly absorbing radiation over a wide range of infrared wavelengths and substantially non-absorbing in the visible wavelengths. Examples of such encoding of information are bar codes and area markings. Information is encoded in markings on a base medium by depositing or intertexturing on the base medium a material where the surface dimensions, thickness and presence of the material contain the encoded information. The encoding, as disclosed in this invention, utilizes a lower cost, more stable material than a material that is capable of highly absorbing over a range of infrared wavelengths and substantially non-absorbing in the visible wavelengths. However, since the material used in this invention is mildly absorbing in the infrared range, the signal obtained by reflecting or transmitting infrared radiation from the markings will be less distinct. Thus, inventive methods are needed to ensure that the encoded information can be decoded. Two different approaches are disclosed; (a) detecting the absorption spectrum and comparing to the known spectrum of the material in order to detect the presence and surface dimensions of the material and (b) utilizing techniques to improve the signal-to-noise such as restricting the range of wavelengths, matched filters and narrowing the bandwidth.
Abstract:
Disclosed is a two-level current driver suitable for driving a semiconductor laser for printing applications, the laser driver including a primary power source for producing a first current pulse of amplitude I.sub.1 and of duration T.sub.2, a secondary power source for producing a second current pulse of amplitude I.sub.2 and of duration T.sub.1, means for combining the outputs of the power sources, and sensing means for detecting the current pulse output from the primary power source.
Abstract:
A device for redirecting beams of light emitted from different sources includes: a monolithic stationary substrate having alignment surfaces for aligning the device for mounting into a system; multiple facets resident on the substrate including at least two facets having surfaces for redirecting the beams of light emitted from different sources; and facet edges on the substrate demarcating each of the multiple facets from one another, the edges providing outside corners greater than .pi. radians between surfaces of adjacent multiple facets. The surfaces of the multiple facets are preferably surfaces of revolution created by cutting the facet surfaces while the device is rotated about a common axis, for instance, by machining via single diamond point turning.
Abstract:
Apparatus and methods for exposing multilayered thermal imaging media to eliminate "cloud" or "woodgrain" artifacts by proper optimization of the exposing radiation angle of incidence. The exposure angle of incidence is large enough so that all rays with high reflectance loss are paired with equally many with low reflectance loss to increase printing efficiency.
Abstract:
An optical component for bidirectionally coupling an optical fiber with active devices for transmitting and receiving information in the form of electromagnetic radiation. The component comprises an integrally formed body molded of optical quality plastic and having two opposed ends, one of which is adapted to receive an optical fiber and the other the active devices. Between the two ends are symmetrically arranged ellipsoidal and planar reflecting surfaces which define a pair of double folded optical paths, one each from an active device to the optical fiber. The reflecting surfaces operate by total internal reflection and are arranged along with other body surfaces so that the component can be molded without the need for mold side action.
Abstract:
Method and apparatus which utilize an LCD modulator array for printing and/or enlarging an image recorded in a color film negative, a positive transparency or a color print, which LCD modulator array has pixels whose "closing time" (the time it takes to convert a pixel from a condition wherein it transmits radiation to a condition wherein it blocks radiation) is substantially longer than their "opening time" (the time it takes to convert a pixel from a condition wherein it blocks radiation to a condition wherein it transmits radiation). In accordance with the present invention, each pixel of the LCD modulator array is opened and closed in a rapid sequence, one after the other, at intervals which are much shorter than the closing time of the pixels of the LCD modulator array. The amount of radiation transmitted by each rapidly opened pixel is determined by detecting a spike of radiation which is transmitted through the rapidly opened pixel and by detecting and subtracting a background amount produced by radiation which is transmitted through other, slowly closing pixels.
Abstract:
An optical resonant cavity adapted to receive, as an input from a transmission trunk line, a group of optical signals distributed in wavelength over a predetermined band and to provide, as an output, a narrower band of the optical signals. The wavelength selective nature of the cavity stems from a modification of its resonant modes with periodic structures that are interferometrically formed as alternating layers of high and low index of refraction in photopolymeric material at its opposite ends and operate to suppress resonant modes at wavelengths outside of the narrow band desired as an output.
Abstract:
An improved method and apparatus for rapidly and accurately adjusting CRT image geometry for the purpose of removing defects in an image reproduced by a CRT. The method and apparatus include a conventional pattern generator for producing a grid-like test pattern, in the form of two mutually perpendicular sets of closely spaced parallel lines, on the viewing screen of the CRT whose geometry or image-forming apparatus is to be adjusted. A reference pattern image formed on a transparent base material suitable for viewing by transmitted light and having the same general characteristics as the CRT formed image is supported in superposed relationship with respect to the CRT formed, pattern generator produced test pattern image. Moire pattern bands or fringes indicative of defects in the displayed test pattern and therefore in the CRT geometry viewable by an equipment operator when viewing the displayed test pattern through the transparent reference pattern in such a superposed relationship may be readily removed by adjusting various component parts of the image-forming electron beam deflection system until the moire fringes resulting from image-defect generated misalignment between the CRT formed test pattern image and the transparent material formed reference pattern image are nulled or are no longer visible to an equipment operator.
Abstract:
A method of preparing an optical fiber includes the steps of applying a first cladding layer of a sinterable, glasseous particulate matter providing a selected index of refraction to a support surface, forming at least one longitudinally-extending groove in the layer prior to sintering, applying a deposit of glasseous particulate matter in said groove to ultimately define a core stripe having an index of refraction greater than that of the previously applied layer, applying a covering layer of glasseous particulate matter, sintering the various layers and the core strip to provide an optical fiber preform, and drawing the preform to provide an optical fiber having a rotationally non-symmetric characteristics with a core of higher index of refraction than the surrounding cladding.