VOTING MECHANISM AND MULTI-MODEL FEATURE SELECTION TO AID FOR LOAN RISK PREDICTION
    71.
    发明申请
    VOTING MECHANISM AND MULTI-MODEL FEATURE SELECTION TO AID FOR LOAN RISK PREDICTION 审中-公开
    投票机制和多模式特征选择援助贷款风险预测

    公开(公告)号:US20150269668A1

    公开(公告)日:2015-09-24

    申请号:US14221723

    申请日:2014-03-21

    CPC classification number: G06Q40/025

    Abstract: Presented are a system, method, and apparatus for loan risk prediction. A computing device receives a plurality of loan account histories containing variables x; a plurality of algorithms then independently selects features from the loan account histories, the selected features being functions of the received variables x; the selected features are then grouped into a first data structure xf; the computing device applies voting algorithm(s) to the selected features to create a second data structure xr; the computing device generates a third data structure xI of interaction terms from the second data structure xr; a fourth data structure is generated, xNL, where xNL=xr∪xI or x∪xI; a model executes that selects significant features from the fourth data structure xNL; and a nonlinear model y=f(XNLR) is generated, the nonlinear model y indicating risk associated with the plurality of loan account histories.

    Abstract translation: 提出了贷款风险预测的制度,方法和手段。 计算设备接收包含变量x的多个贷款账户历史; 然后,多个算法独立地从贷款账户历史中选择特征,所选择的特征是接收变量x的函数; 所选择的特征然后被分组成第一数据结构xf; 计算设备对选定的特征应用投票算法以创建第二数据结构xr; 计算设备从第二数据结构xr生成交互项的第三数据结构xI; 生成第四个数据结构,xNL,其中xNL =xr∪xI或x∪xI; 执行从第四数据结构xNL中选择重要特征的模型; 并且生成非线性模型y = f(XNLR),表示与多个贷款账户历史相关联的风险的非线性模型y。

    Reconstructing an image of a scene captured using a compressed sensing device
    72.
    发明授权
    Reconstructing an image of a scene captured using a compressed sensing device 有权
    重建使用压缩感测装置拍摄的场景的图像

    公开(公告)号:US09070218B2

    公开(公告)日:2015-06-30

    申请号:US13932791

    申请日:2013-07-01

    Abstract: A method for reconstructing an image of a scene captured using a compressed sensing device. A mask is received which identifies at least one region of interest in an image of a scene. Measurements are then obtained of the scene using a compressed sensing device comprising, at least in part, a spatial light modulator configuring a plurality of spatial patterns according to a set of basis functions each having a different spatial resolution. A spatial resolution is adaptively modified according to the mask. Each pattern focuses incoming light of the scene onto a detector which samples sequential measurements of light. These measurements comprise a sequence of projection coefficients corresponding to the scene. Thereafter, an appearance of the scene is reconstructed utilizing a compressed sensing framework which reconstructs the image from the sequence of projection coefficients.

    Abstract translation: 一种用于重构使用压缩感测装置拍摄的场景的图像的方法。 接收到掩模,其识别场景的图像中的至少一个感兴趣区域。 然后使用压缩感测装置获得场景的测量,所述压缩感测装置至少部分地包括根据每个具有不同空间分辨率的基础函数的集合来配置多个空间模式的空间光调制器。 根据掩模自适应地修改空间分辨率。 每个模式将场景的入射光聚焦到对光进行顺序测量的检测器上。 这些测量包括对应于场景的一系列投影系数。 此后,利用从投影系数序列重建图像的压缩感测框架来重建场景的外观。

    TIME SCALE ADAPTIVE MOTION DETECTION
    74.
    发明申请
    TIME SCALE ADAPTIVE MOTION DETECTION 有权
    时间尺度自适应运动检测

    公开(公告)号:US20150139484A1

    公开(公告)日:2015-05-21

    申请号:US14083861

    申请日:2013-11-19

    Abstract: A method and system for efficient non-persistent object motion detection comprises evaluating a video segment to identify at least two first pixel classes corresponding to a plurality of stationary pixels and a plurality of pixels in apparent motion, and evaluating the video segment to identify at least two second pixel classes corresponding to a background and a foreground indicative of the presence of a non-persistent object. The first pixel classes and the second pixel classes can be combined to define a final motion mask in the selected video segment indicative of the presence of a non-persistent object. An output can provide an indication that the object is in motion.

    Abstract translation: 一种用于高效非持续对象运动检测的方法和系统,包括评估视频段以识别对应于多个静止像素和视在运动中的多个像素的至少两个第一像素类别,以及评估视频段至少识别 对应于背景的两个第二像素类和指示非持久对象的存在的前景。 可以组合第一像素类和第二像素类以在所选择的视频段中定义指示非持久对象的存在的最终运动掩码。 输出可以提供对象运动的指示。

    SYSTEM AND METHOD FOR ENHANCING IMAGES AND VIDEO FRAMES
    76.
    发明申请
    SYSTEM AND METHOD FOR ENHANCING IMAGES AND VIDEO FRAMES 审中-公开
    用于增强图像和视频帧的系统和方法

    公开(公告)号:US20150002745A1

    公开(公告)日:2015-01-01

    申请号:US13932453

    申请日:2013-07-01

    Abstract: A system and method for performing vehicle-velocity aware image enhancement. Embodiments generally include a video capture module configured to receive image data of the scene being monitored, an image extraction module configured to extract still images from incoming video data, a vehicle detection module that detects the approximate location of a target vehicle in the scene being monitored, a velocity determination module configured to determine the amplitude and direction of a vector that describes the velocity of the target vehicle in image pixel coordinates, and a velocity-aware enhancing module configured to enhance the image(s) of the target vehicle extracted from the video feed based on the vehicle's velocity. Embodiments may also include an infraction detection module configured to detect the occurrence of a violation of traffic law(s) by a target vehicle.

    Abstract translation: 一种用于执行车辆速度感知图像增强的系统和方法。 实施例通常包括被配置为接收被监视的场景的图像数据的视频捕获模块,被配置为从输入的视频数据中提取静止图像的图像提取模块,车辆检测模块,其检测被监视的场景中的目标车辆的大致位置 ,速度确定模块,被配置为确定描绘所述目标车辆在图像像素坐标中的速度的矢量的幅度和方向;以及速度感知增强模块,被配置为增强从所述目标车辆提取的所述目标车辆的图像 基于车辆速度的视频馈送。 实施例还可以包括违规检测模块,其被配置为检测目标车辆违反交通法律的发生。

    METHODS AND SYSTEMS FOR MULTIMEDIA TRAJECTORY ANNOTATION
    77.
    发明申请
    METHODS AND SYSTEMS FOR MULTIMEDIA TRAJECTORY ANNOTATION 有权
    多媒体TRAJECTORY ANNOTATION的方法和系统

    公开(公告)号:US20140226852A1

    公开(公告)日:2014-08-14

    申请号:US13767658

    申请日:2013-02-14

    CPC classification number: G06K9/00771

    Abstract: A system and method of providing annotated trajectories by receiving image frames from a video camera and determining a location based on the image frames from the video camera. The system and method can further include the steps of determining that the location is associated with a preexisting annotation and displaying the preexisting annotation. Additionally or alternatively, the system and method can further include the steps of generating a new annotation automatically or based on a user input and associating the new annotation with the current location.

    Abstract translation: 一种通过从摄像机接收图像帧并基于来自摄像机的图像帧来确定位置来提供注释轨迹的系统和方法。 该系统和方法还可以包括以下步骤:确定位置与预先注释相关联并显示预先存在的注释。 附加地或替代地,系统和方法还可以包括以下步骤:自动地或基于用户输入生成新的注释并将新注释与当前位置相关联。

    SYSTEM AND METHOD FOR OBJECT TRACKING AND TIMING ACROSS MULTIPLE CAMERA VIEWS
    78.
    发明申请
    SYSTEM AND METHOD FOR OBJECT TRACKING AND TIMING ACROSS MULTIPLE CAMERA VIEWS 有权
    通过多个摄像机视图进行对象跟踪和定时的系统和方法

    公开(公告)号:US20140063263A1

    公开(公告)日:2014-03-06

    申请号:US13973330

    申请日:2013-08-22

    CPC classification number: H04N5/23296 G08B13/19608 G08B13/19645

    Abstract: A system and method for object tracking and timing across multiple camera views includes local and global tracking modules for tracking the location of objects as they traverse particular regions of interest within an area of interest. A local timing module measures the time spent with each object within the area captured by a camera. A global timing module measures the time taken by the tracked object to traverse the entire area of interest or the length of the stay of the object within the area of interest.

    Abstract translation: 用于在多个摄像机视图之间进行对象跟踪和定时的系统和方法包括本地和全局跟踪模块,用于在对象遍历感兴趣区域内的特定感兴趣区域时跟踪对象的位置。 本地计时模块可测量摄像机拍摄区域内每个物体所花费的时间。 全局计时模块测量被跟踪对象在感兴趣区域中遍历整个感兴趣区域或对象的停留时间所花费的时间。

    Hyperspectral imaging devices using hybrid vector and tensor processing

    公开(公告)号:US09854221B2

    公开(公告)日:2017-12-26

    申请号:US14498255

    申请日:2014-09-26

    Abstract: Methods and systems obtain data representative of a scene across spectral bands using a compressive-sensing-based hyperspectral imaging system comprising optical elements. These methods and systems sample two modes of a three-dimensional tensor corresponding to a hyperspectral representation of the scene using sampling matrices, one for each of the two modes, to generate a modified three-dimensional tensor. After sampling the two modes, such methods and systems sample a third mode of the modified three-dimensional tensor using a third sampling matrix to generate a further modified three-dimensional tensor. Then, the methods and systems reconstruct hyperspectral data from the further modified three-dimensional tensor using the sampling matrices and the third sampling matrix.

Patent Agency Ranking