摘要:
A face recognition system and process for identifying a person depicted in an input image and their face pose. This system and process entails locating and extracting face regions belonging to known people from a set of model images, and determining the face pose for each of the face regions extracted. All the extracted face regions are preprocessed by normalizing, cropping, categorizing and finally abstracting them. More specifically, the images are normalized and cropped to show only a persons face, categorized according to the face pose of the depicted person's face by assigning them to one of a series of face pose ranges, and abstracted preferably via an eigenface approach. The preprocessed face images are preferably used to train a neural network ensemble having a first stage made up of a bank of face recognition neural networks each of which is dedicated to a particular pose range, and a second stage constituting a single fusing neural network that is used to combine the outputs from each of the first stage neural networks. Once trained, the input of a face region which has been extracted from an input image and preprocessed (i.e., normalized, cropped and abstracted) will cause just one of the output units of the fusing portion of the neural network ensemble to become active. The active output unit indicates either the identify of the person whose face was extracted from the input image and the associated face pose, or that the identity of the person is unknown to the system.
摘要:
An image retrieval system performs both keyword-based and content-based image retrieval. A user interface allows a user to specify queries using a combination of keywords and examples images. Depending on the input query, the image retrieval system finds images with keywords that match the keywords in the query and/or images with similar low-level features, such as color, texture, and shape. The system ranks the images and returns them to the user. The user interface allows the user to identify images that are more relevant to the query, as well as images that are less or not relevant to the query. The user may alternatively elect to refine the search by selecting one example image from the result set and submitting its low-level features in a new query. The image retrieval system monitors the user feedback and uses it to refine any search efforts and to train itself for future search queries. In the described implementation, the image retrieval system seamlessly integrates feature-based relevance feedback and semantic-based relevance feedback.
摘要:
The described arrangements and procedures identify an image's orientation by extracting features from peripheral portions of the image. The procedure evaluates the extracted features based on training image feature orientation classification models to identify the image's orientation.
摘要:
An exemplary system includes a browser to browse a web page based on a web page definition having a slicing tree defining an arrangement of rectangular regions in the web page. The web page definition can include parametric data describing adaptability parameters associated with a rectangular region. A rendering module renders an adapted web page based on the web page definition, and a proxy module generates an intermediary adapted web page definition. A method includes rendering the web page according to a slicing tree and block property data in an associated web page definition. The method may include determining a set of unsummarized blocks that maximize information fidelity.
摘要:
In community mining based on core objects and affiliated objects, a set of core objects for a community of objects are identified from a plurality of objects. The community is expanded, based on the set of core objects, to include a set of affiliated objects. According to one aspect, a model of a community of objects is obtained by grouping a first collection of a plurality of objects into a center portion, and grouping a second collection of the plurality of objects into one or more concentric portions around the center portion. The groupings of the first and second collections of the objects are identified as the community of objects.
摘要:
An implementation of a technology, described herein, for relevance-feedback, content-based facilitating accurate and efficient image retrieval minimizes the number of iterations for user feedback regarding the semantic relevance of exemplary images while maximizing the resulting relevance of each iteration. One technique for accomplishing this is to use a Bayesian classifier to treat positive and negative feedback examples with different strategies. In addition, query refinement techniques are applied to pinpoint the users' intended queries with respect to their feedbacks. These techniques further enhance the accuracy and usability of relevance feedback. This abstract itself is not intended to limit the scope of this patent. The scope of the present invention is pointed out in the appending claims.
摘要:
In community mining based on core objects and affiliated objects, a set of core objects for a community of objects are identified from a plurality of objects. The community is expanded, based on the set of core objects, to include a set of affiliated objects. According to one aspect, a model of a community of objects is obtained by grouping a first collection of a plurality of objects into a center portion, and grouping a second collection of the plurality of objects into one or more concentric portions around the center portion. The groupings of the first and second collections of the objects are identified as the community of objects.
摘要:
Red-eye detection based on red region detection with eye confirmation initially identifies pixels that correspond to the color of red-eye within an image. A determination is then made as to whether these identified pixels and surrounding areas are part of an eye or not part of an eye. Those identified pixels that are determined to be part of an eye are the detected red-eye regions.
摘要:
Various embodiments provide methods and systems for streaming data that can facilitate streaming during bandwidth fluctuations in a manner that can enhance the user experience. In one aspect, a forward-shifting technique is utilized to buffer data that is to be streamed, e.g. an enhancement layer in a FGS stream. Various techniques can drop layers actively when bandwidth is constant. The saved bandwidth can then be used to pre-stream enhancement layer portions. In another aspect, a content-aware decision can be made as to how to drop enhancement layers when bandwidth decreases. During periods of decreasing bandwidth, if a video segment does not contain important content, the enhancement layers will be dropped to keep the forward-shifting of the enhancement layer unchanged. If the enhancement layer does contain important content, it will be transmitted later when bandwidth increases.
摘要:
An image retrieval system performs both keyword-based and content-based image retrieval. A user interface allows a user to specify queries using a combination of keywords and examples images. Depending on the input query, the image retrieval system finds images with keywords that match the keywords in the query and/or images with similar low-level features, such as color, texture, and shape. The system ranks the images and returns them to the user. The user interface allows the user to identify images that are more relevant to the query, as well as images that are less or not relevant to the query. The user may alternatively elect to refine the search by selecting one example image from the result set and submitting its low-level features in a new query. The image retrieval system monitors the user feedback and uses it to refine any search efforts and to train itself for future search queries. In the described implementation, the image retrieval system seamlessly integrates feature-based relevance feedback and semantic-based relevance feedback.