Abstract:
A mobile robot includes a body movable over a surface within an environment, a calibration coil carried on the body and configured to produce a calibration magnetic field, a sensor circuit carried on the body and responsive to the calibration magnetic field, and a controller carried on the body and in communication with the sensor circuit. The sensor circuit is configured to generate calibration signals based on the calibration magnetic field. The controller is configured to calibrate the sensor circuit as a function of the calibration signals, thereby resulting in a calibrated sensor circuit configured to detect a transmitter magnetic field within the environment and to generate detection signals based on the transmitter magnetic field. The controller is configured to estimate a pose of the mobile robot as a function of the detection signals.
Abstract:
The present invention provides a mobile robot configured to navigate an operating environment, that includes a controller circuit that directs a drive of the mobile robot to navigate the mobile robot through an environment using camera-based navigation system and a camera including optics defining a camera field of view and a camera optical axis, where the camera is positioned within the recessed structure and is tilted so that the camera optical axis is aligned at an acute angle of above a horizontal plane in line with the top surface and is aimed in a forward drive direction of the robot body, and the camera is configured to capture images of the operating environment of the mobile robot.
Abstract:
A mobile floor cleaning robot includes a body defining a forward drive direction, a drive system, a cleaning system, and a controller. The cleaning system includes a pad holder, a reservoir, a sprayer, and a cleaning system. The pad holder has a bottom surface for receiving a cleaning pad. The reservoir holds a volume of fluid, and the sprayer sprays the fluid forward the pad holder. The controller is in communication with the drive and cleaning systems. The controller executes a cleaning routine that includes driving in the forward direction a first distance to a first location, then driving in a reverse drive direction a second distance to a second location. From the second location, the robot sprays fluid in the forward drive direction but rearward the first location. The robot then drives in alternating forward and reverse drive directions while smearing the cleaning pad along the floor surface.
Abstract:
An integrated intelligent system includes a first intelligent electronic device, a second intelligent electronic device, a transferable intelligent control device (TICD) and a cross product bus. The first intelligent electronic device performs a first function and the second intelligent electronic device performs a second function. The cross product bus couples the first intelligent electronic device to the transferable intelligent control device. The TICD partially controls behaviors of the intelligent electronic device by sending commands over the cross product bus to the first intelligent electronic device and the TICD partially controls behaviors of the second intelligent electronic device to perform the second function. The TICD is first attached to the first intelligent electronic device to partially control the behaviors of the first electronic device, then detached from the first electronic device, and then attached to the second intelligent electronic device to perform the second function.
Abstract:
The present invention provides a mobile robot configured to navigate an operating environment, that includes a controller circuit that directs a drive of the mobile robot to navigate the mobile robot through an environment using camera-based navigation system and a camera including optics defining a camera field of view and a camera optical axis, where the camera is positioned within the recessed structure and is tilted so that the camera optical axis is aligned at an acute angle of above a horizontal plane in line with the top surface and is aimed in a forward drive direction of the robot body, and the camera is configured to capture images of the operating environment of the mobile robot.
Abstract:
A mobile robot configured to travel across a residential floor or other surface while cleaning the surface with a cleaning pad and cleaning solvent is disclosed. The robot includes a controller for managing the movement of the robot as well as the treatment of the surface with a cleaning solvent. The movement of the robot can be characterized by a class of trajectories that achieve effective cleaning. The trajectories include sequences of steps that are repeated, the sequences including forward and backward motion and optional left and right motion along arcuate paths.
Abstract:
A pad particularly adapted for surface cleaning. The pad includes an absorbent core having the ability to absorb and retain liquid material, and a liner layer in contact with and covering at least one side of the absorbent core. The liner layer has the ability to retain and wick liquid material through the liner layer. Cleaning apparatus containing such pads and methods of using such pads are also described.
Abstract:
A pad particularly adapted for surface cleaning. The pad includes an absorbent core having the ability to absorb and retain liquid material, and a liner layer in contact with and covering at least one side of the absorbent core. The liner layer has the ability to retain and wick liquid material through the liner layer. Cleaning apparatus containing such pads and methods of using such pads are also described.
Abstract:
An integrated intelligent system includes a first intelligent electronic device, a second intelligent electronic device, a transferable intelligent control device (TICD) and a cross product bus. The first intelligent electronic device performs a first function and the second intelligent electronic device performs a second function. The cross product bus couples the first intelligent electronic device to the transferable intelligent control device. The TICD partially controls behaviors of the intelligent electronic device by sending commands over the cross product bus to the first intelligent electronic device and the TICD partially controls behaviors of the second intelligent electronic device to perform the second function. The TICD is first attached to the first intelligent electronic device to partially control the behaviors of the first electronic device, then detached from the first electronic device, and then attached to the second intelligent electronic device to perform the second function.