Abstract:
Cathodic protection of a structure including a steel member at least partly buried in a covering layer, such as steel rebar in a concrete structure, is provided by embedding sacrificial anodes into the concrete layer at spaced positions over the layer and connecting the anodes to the rebar. Each anode is inserted into a drilled hole in the layer and is electrically attached to the rebar in the same or an adjacent hole by a steel pin which is attached to the reinforcement by arc welding or by impact. In the arrangement where the anode and the attachment are in the same hole, the pin passes into or through the anode so as to hold the anode rigidly within the hole. The hole is filled by a settable filler material. In order to maintain effective current conduction from the anode to the reinforcement through the filler and the concrete over an extended period to maintain the required protection, there is added to the filler, to a covering layer on the anode body or to the anode body itself a first material to hold the pH at the anode in a preferred range of the order of 12 to 14 and a second humectant material to absorb moisture.
Abstract:
Electric current of about 1 A/M2 is applied to reinforcement in concrete and the gases released are allowed to pass to the atmosphere via gas permeable set material in a hole alongside the electrode.
Abstract:
The method for improving the corrosion resistance of reinforced concrete coated with a thermal spray coat of metals, especially of zinc or zinc alloys, is effected by electrically connecting said spray coat with the armour and additionally coating it with a polyurethane resin which is applied as a low-viscosity solution in organic solvents.
Abstract:
The present invention relates to the field of cathodic protection of reinforced concrete. A conductive metal is thermally applied onto an exposed surface of the concrete in an amount effective to form an anode on the surface. This establishes an interface between the anode and the concrete. The thermal application is performed in a manner which is effective to impart permeability to the anode. A lithium salt solution selected from the group consisting of lithium nitrate solution, lithium bromide solution, and combinations thereof is applied to the external surface of the anode. The solution migrates by capillary attraction to the interface of the anode with the concrete depositing the lithium salt at the interface. The lithium salt functions as a current enhancing agent. The salt also functions as a humectant absorbing moisture from the atmosphere thereby providing an electrolyte at the interface. These combined effects substantially increase current delivery from the anode.
Abstract:
A polymerized microemulsion pressure sensitive adhesive composition is described. The composition has peel adhesion of at least 3 Newtons/100 mm as measured according to a PSTC-1 Test. The composition preferably has a bicontinuous structure of a continuous phase of a hydrophobic pressure sensitive adhesive polymer and a continuous phase of a hydrophilic polymer. The bulk properties of both polymers are retained in the bicontinuous structure. The composition is prepared from a microemulsion comprising a free-radically ethylenically unsaturated polar amphiphilic or hydrophilic monomer or oligomer in the aqueous phase, a free-radically ethylenically unsaturated hydrophobic monomer, having a glass transition temperature suitable for forming a pressure sensitive adhesive, in the oil phase, water, and surfactant. Uses for the pressure sensitive adhesive composition include biomedical articles, such as biomedical electrodes, medical skin coverings, and pharmaceutical delivery devices, and industrial articles, such as zinc/adhesive tapes used for cathodic protection of rebars embedded in concrete.
Abstract:
A BOF process in which iron oxide units are added to the melt during the blow characterized in that the oxygen flow is reduced during pellet feeding and is replenished with inert gas so that the total gas flow remains the same as that designed to achieve optimum BOF performance.
Abstract:
A polymerized microemulsion pressure sensitive adhesive composition is described. The composition has peel adhesion of at least 3 Newtons/100 mm as measured according to a PSTC-1 Test. The composition preferably has a bicontinuous structure of a continuous phase of a hydrophobic pressure sensitive adhesive polymer and a continuous phase of a hydrophilic polymer. The bulk properties of both polymers are retained in the bicontinuous structure. The composition is prepared from a microemulsion comprising a free-radically ethylenically unsaturated polar amphiphilic or hydrophilic monomer or oligomer in the aqueous phase, a free-radically ethylenically unsaturated hydrophobic monomer, having a glass transition temperature suitable for forming a pressure sensitive adhesive, in the oil phase, water, and surfactant. Uses for the pressure sensitive adhesive composition include biomedical articles, such as biomedical electrodes, medical skin coverings, and pharmaceutical delivery devices, and industrial articles, such as zinc/adhesive tapes used for cathodic protection of rebars embedded in concrete.
Abstract:
A method for preventing corrosion of a reinforced concrete structure having a reinforcing steel embedded therein, which comprises coating an aggregate-containing primer on the surface of the reinforced concrete structure, to form a primer layer having a rough surface, metal-spraying a metal having an ionization tendency larger than iron on the primer layer to form a metal spray coating layer, and connecting the metal spray coating layer and the reinforcing steel by an electrically conductive material.
Abstract:
A system for preventing corrosion of a metallic surface in an environment in which a corrosive condensate with a pH of less than about 3 tends to form on the surface exposed to the environment. The system includes an absorbent lining formed from a concrete material that has a chemical resistance to a low pH and that increases the pH of the environment at the underlying metallic surface. The system further includes a counterelectrode and an electrochemical potential control means connected in electrical circuit with the metallic surface. An electrical potential is maintained upon the metallic surface sufficient to effect cathodic protection.