Abstract:
An iterative drilling simulation method and system for enhanced economic decision making includes obtaining characteristics of a rock column in a formation to be drilled, specifying characteristics of at least one drilling rig system; and iteratively simulating the drilling of a well bore in the formation. The method and system further produce an economic evaluation factor for each iteration of drilling simulation. Each iteration of drilling simulation is a function of the rock column and the characteristics of the at least one drilling rig system according to a prescribed drilling simulation model.
Abstract:
A downhole drilling tractor for moving within a borehole comprises a tractor body, two packerfeet, two aft propulsion cylinders, and two forward propulsion cylinders. The body comprises aft and forward shafts and a central control assembly. The packerfeet and propulsion cylinders are slidably engaged with the tractor body. Drilling fluid can be delivered to the packerfeet to cause the packerfeet to grip onto the borehole wall. Drilling fluid can be delivered to the propulsion cylinders to selectively provide downhole or uphole hydraulic thrust to the tractor body. The tractor receives drilling fluid from a drill string extending to the surface. A system of spool valves in the control assembly controls the distribution of drilling fluid to the packerfeet and cylinders. The valve positions are controlled by motors. A programmable electronic logic component on the tractor receives control signals from the surface and feedback signals from various sensors on the tool. The feedback signals may include pressure, position, and load signals. The logic component also generates and transmits command signals to the motors, to electronically sequence the valves. Advantageously, the logic component operates according to a control algorithm for intelligently sequencing the valves to control the speed, thrust, and direction of the tractor.
Abstract:
A method and apparatus for communicating a desired target signal along a piping structure is provided. Because of a lossy communication path presented by the piping structure, an input signal, which is transmitted from a first location on the piping structure, is consciously predistorted prior to transmission. The amount and nature of the predistortion applied to the input signal is determined by mathematically modeling the communication path between the first location and a second location. Predistortion of the input signal results in reception of an output signal at the second location that closely approximates the desired target signal. Application of this predistortion method of communicating is described in the context of communicating in the borehole of a petroleum well.
Abstract:
A controllable gas-lift well having controllable gas-lift valves and sensors for detecting flow regime is provided. The well uses production tubing and casing to communicate with and power the controllable valve from the surface. A signal impedance apparatus in the form of induction chokes at the surface and downhole electrically isolate the tubing from the casing. A high band-width, adaptable spread spectrum communication system is used to communicate between the controllable valve and the surface. Sensors, such as pressure, temperature, and acoustic sensors, may be provided downhole to more accurately assess downhole conditions and in particular, the flow regime of the fluid within the tubing. Operating conditions, such as gas injection rate, back pressure on the tubing, and position of downhole controllable valves are varied depending on flow regime, downhole conditions, oil production, gas usage and availability, to optimize production. An Artificial Neural Network (ANN) is trained to detect a Taylor flow regime using downhole acoustic sensors, plus other sensors as desired. The detection and control system and method thereof is useful in many applications involving multi-phase flow in a conduit.
Abstract:
The present invention provides a drilling system that utilizes a neural network for predictive control of drilling operations. A downhole processor controls the operation of the various devices in a bottom hole assembly to effect changes to drilling parameters and drilling direction to autonomously optimize the drilling effectiveness. The neural network iteratively updates a prediction model of the drilling operations and provides recommendations for drilling corrections to a drilling operator.
Abstract:
An apparatus and method for monitoring and reporting downhole bit failure. Sensors are located on a sub assembly (which is removable from the drill bit) and send data to neural net or other adaptive filter. The neural net uses past sensor readings to predict future sensor readings. The value predicted for the sensors is subtracted from the actual value to produce a prediction error. Increases in prediction error are used to indicate bit failure. The results of this are transmitted to the operator by varying the pressure in the drilling mud flow.
Abstract:
A method for determining bit wear in a drill bit of a drilling rig system is disclosed. The method provides a first drill bit design. The first drill bit design having a first geometry. The method also generates a geological model of given formation. The geological model including a geological characteristic based on a length of formation drilled in a given amount of time. The method predicts the first wear rate of the first drill bit design based on the first geometry compared to the geological model for the length of formation drilled.
Abstract:
A downhole drilling tractor for moving within a borehole comprises a tractor body, two packerfeet, two aft propulsion cylinders, and two forward propulsion cylinders. The body comprises aft and forward shafts and a central control assembly. The packerfeet and propulsion cylinders are slidably engaged with the tractor body. Drilling fluid can be delivered to the packerfeet to cause the packerfeet to grip onto the borehole wall. Drilling fluid can be delivered to the propulsion cylinders to selectively provide downhole or uphole hydraulic thrust to the tractor body. The tractor receives drilling fluid from a drill string extending to the surface. A system of spool valves in the control assembly controls the distribution of drilling fluid to the packerfeet and cylinders. The valve positions are controlled by motors. A programmable electronic logic component on the tractor receives control signals from the surface and feedback signals from various sensors on the tool. The feedback signals may include pressure, position, and load signals. The logic component also generates and transmits command signals to the motors, to electronically sequence the valves. Advantageously, the logic component operates according to a control algorithm for intelligently sequencing the valves to control the speed, thrust, and direction of the tractor.
Abstract:
A new image reconstruction technique for imaging two- and three-phase flows using electrical capacitance tomography (ECT) has been developed based on multi-criteria optimization using an analog neural network, hereafter referred to as Neural Network Multi-criteria Optimization Image Reconstruction (NN-MOIRT)). The reconstruction technique is a combination between multi-criteria optimization image reconstruction technique for linear tomography, and the so-called linear back projection (LBP) technique commonly used for capacitance tomography. The multi-criteria optimization image reconstruction problem is solved using Hopfield model dynamic neural-network computing. For three-component imaging, the single-step sigmoid function in the Hopfield networks is replaced by a double-step sigmoid function, allowing the neural computation to converge to three-distinct stable regions in the output space corresponding to the three components, enabling the differentiation among the single phases.
Abstract:
A drill string is equipped with a downhole assembly having an instrumented sub and a drill bit. The instrumented sub has a power source that requires no electrical chemical batter. A mass-spring system is used, which during drilling causes a magnet to oscillate past a coil. This induces current which is used to power downhole instruments.