Abstract:
A downhole fluid analysis tool capable of fluid analysis during production logging that includes a phase separator and a plurality of sensors to perform analysis on the fluids collected at a subsurface location in a borehole.
Abstract:
A method and apparatus is provided to determine downhole pressures, such as annular pressure and/or pore pressure, during a drilling operation. A downhole drilling tool includes at least one conduit and a corresponding gauge. The conduit is positioned in the downhole tool and has an opening adapted to receive downhole fluids. The conduit is positionable in fluid communication with one of the wellbore and the formation whereby pressure is equalized therebetween. The gauge is provided for measuring the pressure in the conduit.
Abstract:
A system and method for profiling and modifying fluid flow through a wellbore. The system comprises a logging system, a downhole unit, and a deployment system. The logging system comprises a logging tool. The downhole unit is operable to house the logging tool. In addition, the downhole unit is operable to selectively secure a retrievable fluid barrier within a wellbore casing. The deployment system is operable to deploy the downhole unit in the wellbore casing. The method comprises deploying the downhole unit into the wellbore and securing the retrievable fluid barrier below a first group of perforations. The method also comprises operating the logging tool to detect a wellbore fluid parameter.
Abstract:
A zone isolating and testing apparatus comprising an isolation tool and a downhole flow control means and a method of using such apparatus is disclosed. The zone isolating and testing apparatus is particularly useful for testing zones during reverse circulation drilling using concentric drill string such as concentric drill pipe or concentric coiled tubing. The isolation tool of the zone isolating and testing apparatus comprises an expandable packer means and is adapted to connect to concentric drill string near the drilling means. The downhole flow control means of the zone isolating and testing apparatus comprises two valves, one for closing off the annulus between the inner tube and outer tube of the concentric drill string and the other for closing off the inner space of the inner tube. The downhole flow control means is also adapted to connect to concentric drill string near the drilling means. During testing, the isolation tool seals off the annulus between the concentric drill string and the walls of the wellbore and the downhole flow control means seals off either the annulus between the inner tube and outer tube of the concentric drill string or the inner space of the inner tube of the concentric drill string.
Abstract:
A method for determining the in-situ effective mobility of hydrocarbons in a formation layer, in which a formation test tool, having a fluid analyzer, induces sample fluid to flow from the formation, the sample being analyzed and discarded where it includes fluid from the invaded zone, so as to perform the pressure test on uncontaminated formation fluid.
Abstract:
Formation testing, resistivity and NMR measurements are used concurrently to determine a relative permeability representative of a formation surrounding the borehole. A method and apparatus is provided for accurate determination of the relative permeability for a formation by measuring saturation levels in a region of interest determined from resistivity or NMR readings versus time during formation draw down pressure testing. The method and apparatus determines and effective permeability over time for various saturation levels to determine the relative permeability for the formation at each saturation level and also enables determination of the efficacy of utilizing completion fluids in the formation to increase formation productivity. The method and apparatus enables more accurate determination of effective permeability and the irreducible saturation level. The method and apparatus also provides for determination of whether a pad is sealed properly against a borehole wall and determines if a probe is clogged.
Abstract:
A method and a system for testing a borehole in an underground formation by the use of so-called closed chamber testing. When carrying out the method, a test or production pipe (5) is carried down the borehole, where the test pipe can be closed at its upper end and at its lower end is provided with a downhole assembly (6) comprising equipment for testing of fluid flow from the formation (3), the annulus (23) between the test pipe (5) and a casing (20) in the borehole being shut off during the test by a gasket (22) at a desired depth, and fluid from the formation being allowed to flow through the test pipe (5) to a collecting tank (9) coupled to the test pipe via a flow head (4) at the upper end of the test pipe (5). In the downhole assembly (6) at the lower end of the test pipe (5) there is releasably retained a pig (30) forming a barrier between formation fluid and a lightweight damping fluid (7) filling the test pipe above the pig, the pig (30) being released at the start of the test and being moved in a controlled manner upwards in the pipe (5) as a result of a positive pressure difference between the fluids below and above the pig.
Abstract:
A system and method for profiling and modifying fluid flow through a wellbore. The system comprises a logging system, a downhole unit, and a deployment system. The logging system comprises a logging tool. The downhole unit is operable to house the logging tool. In addition, the downhole unit is operable to selectively secure a retrievable fluid barrier within a wellbore casing. The deployment system is operable to deploy the downhole unit in the wellbore casing. The method comprises deploying the downhole unit into the wellbore and securing the retrievable fluid barrier below a first group of perforations. The method also comprises operating the logging tool to detect a wellbore fluid parameter.
Abstract:
A novel method, system and tool for performing formation and well evaluation while drilling are disclosed. These inventions determine the properties of a particular formation within a reservoir as the reservoir is being intersected during well construction. In one form of the invention, the formation evaluation is made using a direct measurement of the formation's ability to flow fluids. The flow potential of a reservoir during underbalanced well construction is determined as the well is being constructed. The methods produce an understanding of the volumes and types of fluids such as oil, gas, and/or water, that can be produced out of discrete sections of a formation within a reservoir as the reservoir is intersected. The trajectory and path of the wellbore through the reservoir are modified to intersect formation having more desirable permeability and productivity to decrease the time to market of the hydrocarbon reserves within a reservoir without the time delay inherent when conventional formation evaluation techniques are applied. A downhole flow measurement instrument is used to obtain actual flow ratios. The instrument is integrated into a near-bit stabilizer and can be used for early kick and benign nullbreathingnull fractures detection in the open hole wellbore.
Abstract:
Subsurface wellbore conditions are measured directly in the wellbore while the fluid circulation system is not pumping. The measured values are recorded at the subsurface location and subsequently transmitted to the well surface when circulation is resumed using fluid pulse telemetry (FPT). Real-time measurements made when the fluids are circulating are transmitted real time using FPT. Axially spaced measurements are used to obtain differential values. The apparatus of the invention comprises an assembly carried by a drill string that is used to selectively isolate the area within the well that is to be evaluated. The apparatus includes an assembly having axially spaced inflatable well packers that are used to isolate an uncased section of the wellbore. The apparatus is equipped with self-contained measuring and recording equipment, a fluid receiving reservoir, circulation valving, measurement while drilling equipment, and automated controls. Measurements are made while the circulation is terminated or while the well packers are being used to isolate an area of the wellbore from the circulating fluid. The method is used to directly measure and evaluate conditions caused by pumping and drill string movement, such as swab and surge pressures. Other conditions such as the formation strength, formation pressure, the fluid density, and other subsurface conditions related to the well are also measured.