Abstract:
A magnet roller includes a rotary sleeve having a given systematic pattern on the outer surface of the sleeve and a magnet provided in the sleeve. This structure transfers toner uniformly along the outer surface of the sleeve. A printer, for instance, employing this magnet roller can print a fine copy.
Abstract:
A magnetic roller for electrophotography comprises a foamed resin magnetic material. A method of producing a magnetic roller comprises the steps of providing magnetic filler, a resin binder and a foaming agent in a closed mold; activating the foaming agent in the closed mold; and removing the resulting formed roller from the mold.
Abstract:
A polar-anisotropic ring magnet having magnetization directions in alignment with its normal line at each magnetic pole position and in alignment with its tangential line at each middle position between adjacent magnetic poles, and having a substantially constant angle difference in a magnetization direction between adjacent elements, the elements being obtained by division at an equal angle pitch between the magnetic pole position and the middle position adjacent to the magnetic pole position.
Abstract:
The object is to provide a magnet roller whereby picture quality can be improved by raising the magnetic flux density of the specified magnetic pole and/or other magnetic poles, and wherein this magnetic pole pattern can be achieved with low cost. In a magnet roller (10) according to the invention that achieves this object, a plurality of magnet pieces (12, 14, 16, 18) are mounted at the periphery of a shaft (20) by joining at joining faces and peaks (32a, 34a, 36a, 38a) of magnetic poles (32, 34, 36, 38) are generated on the lines of extension of joining faces (13, 15, 17, 19) by setting the directions of orientation magnetization (22, 24, 26, 28) of adjacent magnet pieces (12, 14, 16, 18) facing the joining faces (13, 15, 17, 19), the respective joining faces (13, 15, 17, 19) of the plurality of magnet pieces (20) being provided along the roller radial directions.
Abstract:
A method of magnetizing a magnetic sheet, said method able to magnetize a roll sheet conveniently at a high speed and stably including the steps of bringing a cylindrical permanent magnet having N-poles and S-poles multipolar-magnetized alternately along its circumference into contact with one surface of a long magnetic sticking sheet having an axis of easy magnetization oriented in a sheet longitudinal direction so that the sheet longitudinal direction is orthogonal to a shaft of the permanent magnet and multipolar-magnetizing the magnetic sticking sheet along the axis of easy magnetization by rotating the cylindrical permanent magnet due to the magnetic sticking sheet being rolled up, wherein the angle of contact of the magnetic sticking sheet fed to the cylindrical permanent magnet is made 45null or less, and a magnetization apparatus used for the method.
Abstract:
A radial anisotropic sintered magnet formed into a cylindrical shape includes a portion oriented in directions tilted at an angle of 30null or more from radial directions, the portion being contained in the magnet at a volume ratio in a range of 2% or more and 50% or less, and a portion oriented in radial directions or in directions tilted at an angle less than 30null from radial directions, the portion being the rest of the total volume of the magnet. The radial anisotropic sintered magnet has excellent magnet characteristics without occurrence of cracks in the steps of sintering and cooling for aging, even if the magnet has a shape of a small ratio between an inner diameter and an outer diameter.
Abstract:
A mold used to form a magnetic member includes a mold body having a mold opening, a mold support that supports the mold cavity, and a mold insert. The mold insert is disposed in the mold opening of the mold body to form a mold cavity. The mold insert is coated with a coating to protect the mold body from chemical attack and abrasive wear of the mold material. The coating comprises an electroless nickel layer formed on or over the mold insert, and a chromium nitride layer formed on or over the electroless nickel layer. The mold insert can be formed of beryllium-copper (BenullCu).
Abstract:
A method for manufacturing a magnetic roll for use in an electrophotographic printing machine of the type having an electrostatic latent image recorded on a photoconductive member is provided. The method includes the steps of placing a shaft in a mold cavity and molding a core in the mold cavity with the shaft in the cavity. The core defines a pocket on the periphery of the core. The method further includes the step of attaching a magnet to the pocket.
Abstract:
A ferrite powder for bonded magnets having a substantially magnetoplumbite-type crystal structure and an average diameter of 0.9-2 &mgr;m, the ferrite powder having a basic composition represented by the following general formula: (A1-xRxO.n[Fe1-yMy)2O3] by atomic ratio, wherein A is Sr and/or Ba; R is at least one of rare earth elements including Y, La being indispensable; M is at least one element selected from the group consisting of Co, Mn, Ni and Zn; and x, y and n are numbers meeting the conditions of 0.01≦x≦0.4, [x/(2.6n)]≦y≦[x/(1.6n)], and 5≦n≦6, (Si+Ca) being 0.2 weight % or less, and (Al+Cr) being 0.13 weight % or less, can be produced by mixing iron oxide containing 0.06 weight % or less of (Si+Ca) and 0.1 weight % or less of (Al+Cr) with compounds of A, R and M elements, calcining the resultant mixture for ferritization, pulverizing the resultant magnetically isotropic ferrite and then heat-treating the pulverized ferrite at 750-950° C. for 0.5-3 hours in the air.
Abstract:
In a magnetic cylinder for holding printing plates and the like in which magnetic elements are located and held in place in recesses formed on the outer surface of the cylinder, a thin substantially non-magnetic foraminate layer is located at the bottom of the recesses and the magnetic elements rest against the foraminate layer.