Abstract:
This invention is a method of forming ribs of a plasma display panel by transfer-printing a glass paste on a glass substrate. The method comprises; forming a recess having a configuration corresponding to ribs arranged in parallel with each other and a joining element joining the ribs, filling the recess with the glass paste, and starting transfer-printing the glass paste on the glass substrate from a portion of the glass paste corresponding to the joining element filled in the recess. The method ensures that the glass paste comes off substantially completely from within the recess as it is being transfer-printed on the glass substrate and that the ribs are formed with high precision.
Abstract:
A funnel-shaped chip tube and a tubular-shaped press frit are prepared. After the chip tube is disposed on a major surface of a substrate so that the center axis of an exhaust hole provided in the substrate of a sealed container body and the center axis of the chip tube may substantially coincide with each other, the press frit is so disposed as to be located on a surface of an opening portion. After that, by heating the whole device, the press frit is heated and melted, to provide a sealing member contiguously from an outer-rim outside portion of the flare-shaped opening portion of the chip tube to a portion of a tubular portion beyond a boundary.
Abstract:
A plasma display panel and the manufacturing method thereof. Forming partition wall structures on the back substrate of the paste display panel and forming the column-shaped protrusions at the positions corresponding to the cuts on the rib on the front substrate of the plasma display panel. The manufacturing process is simple and the alignment of the front and back substrate is easy. In addition, the size of the opening of the rib and the size of the cut can be easily adjusted according to the needs of the application during the manufacturing process.
Abstract:
An electromagnetie-wave shielding and light transmitting plate suitable for an electromagnetic-wave shielding filter for a PDP, which has good electromagnetic-wave sheilding efficiency and light transparency, can provide distinct pictures, and can yet be easily made, is provided. The electromagnetic-wave shielding and light transmitting plate is formed of two transparent base plates and an adhesive layer made of EVA in which conductive particles are dispersed and mixed. The base plates are integrally bonded together by the adhesive layer. Adjusting the particle size and the dispersed amount of the conductive particles enables the manufacture of plates having desired electromagnetic-wave shielding efficiency, in addition, good light transparency, without moire phenomenon. Using an adhesive sheet formed by mixing the conductive particles into the EVA facilitates the manufacture of the aforementioned plate.
Abstract:
A plurality of scanning electrodes and a plurality of sustaining electrodes parallel to each other are located on an inner face of a first glass substrate. Each of the scanning electrodes and each of the sustaining electrodes form a pair. A dielectric layer and a protection layer are formed on the first glass substrate in this order, covering the electrodes. A plurality of data electrodes perpendicular to the scanning electrodes and the sustaining electrodes are located on an inner face of a second glass substrate which is located opposed to the first glass substrate with a discharge space interposed therebetween. In an AC-type PDP having such a structure, at least one of the plurality of scanning electrodes and the plurality of sustaining electrodes are divided into a plurality of groups, and pulses having different phases are applied to the electrodes in different groups, thereby causing sustaining discharge. The scanning electrodes and the sustaining electrodes may be comb-like with teeth. The comb-like scanning electrodes and the comb-like sustaining electrodes are opposed to each other with a small gap interposed therebetween in the manner that the teeth thereof are in engagement with each other. In such a case, the data electrodes are located opposed to and in a longitudinal direction of the teeth of the scanning electrodes.
Abstract:
The present invention is directed to methods and apparatus for enhancing the performance of visual display units which utilize plasma display panels. More specifically, the present invention provides methods and apparatus for providing an electrical noise suppressing/chromaticity enhancing accessory device for positioning in front of the viewing surface of a plasma display panel. In its most basic embodiment, the accessory device of the present invention comprises a first and a second rigid substrate laminated together by a laminating layer; an optically selective coating providing high photopic transmittance, continuous high electrical conductivity for RFI shielding, and reflectivity specifically within the near-IR region that is mechanically protected by being sandwiched between one rigid substrate and the laminating layer; and, a multiple-dye coating for selectively absorbing IR energy emissions and selectively balancing the chromaticity of the PDP display. The combination of the IR absorption and color-correction due to the multiple-dye coating and the near-IR reflectivity due to the optically selective coating surprisingly results in very good suppression of IR emissions from the PDP within the spectral range of about 800 to about 2500 nm and chromaticity enhancement while simultaneously maintaining good photopic transmittance.
Abstract:
A plurality of scanning electrodes and a plurality of sustaining electrodes parallel to each other are located on an inner face of a first glass substrate. Each of the scanning electrodes and each of the sustaining electrodes form a pair. A dielectric layer and a protection layer are formed on the first glass substrate in this order, covering the electrodes. A plurality of data electrodes perpendicular to the scanning electrodes and the sustaining electrodes are located on an inner face of a second glass substrate which is located opposed to the first glass substrate with a discharge space interposed therebetween. In an AC-type PDP having such a structure, at least one of the plurality of scanning electrodes and the plurality of sustaining electrodes are divided into a plurality of groups, and pulses having different phases are applied to the electrodes in different groups, thereby causing sustaining discharge. The scanning electrodes and the sustaining electrodes may be comb-like with teeth. The comb-like scanning electrodes and the comb-like sustaining electrodes are opposed to each other with a small gap interposed therebetween in the manner that the teeth thereof are in engagement with each other. In such a case, the data electrodes are located opposed to and in a longitudinal direction of the teeth of the scanning electrodes.
Abstract:
The present invention is directed to apparatus for enhancing the performance of visual display units which utilize plasma display panels. More specifically, the present invention provides apparatus for providing an electrical noise suppressing/chromaticity enhancing accessory device for positioning in front of the viewing surface of a plasma display panel (PDP). In its most basic embodiment, the accessory device of the present invention comprises an optically selective coating providing high photopic transmittance, continuous high electrical conductivity for RFI shielding, and reflectivity specifically within the near-IR region. It also preferably includes a multiple-dye coating for selectively absorbing IR energy emissions and selectively balancing the chromaticity of the PDP display and a plastic substrate layer to provide impact resistance. The combination of the IR absorption and color-correction due to the multiple-dye coating and the near-IR reflectivity due to the optically selective coating surprisingly results in very good suppression of IR emissions from the PDP within the spectral range of about 800 to about 2500 nm and chromaticity enhancement while simultaneously maintaining good photopic transmittance.
Abstract:
A plasma display comprises a face plate; at least one energy source; a first layer comprising pigmented phosphors; and a second layer comprising non-pigmented phosphors. The at least one energy source emits energy that is capable of exciting the non-pigmented phosphors of the second layer. Thus, the non-pigmented phosphors of the second layer emit energy comprising visible light. The first layer comprising the pigmented phosphors acts as a filter to filter the emissions from the non-pigmented phosphors of the first layer. Therefore, the plasma display has at least an increase in contrast of the energy emitted therefrom.
Abstract:
The present invention is directed to methods and apparatus for enhancing the performance of visual display units which utilize plasma display panels. More specifically, the present invention provides methods and apparatus for providing an optically enhancing/noise suppressing device for positioning in front of the viewing surface of a plasma display panel. The device also increases the impact resistance of the PDP. The device of the present invention is manufactured separately from the PDP. The device may be provided with attachment means for securing the device to the surface of the visual display unit in a position in front of the viewing surface of the PDP or may be designed to be free-hanging, i.e., suspended, or otherwise positioned in front of the viewing surface of the PDP. In its most basic embodiment, the device of the present invention comprises multiple layers of different materials including at least one plastic substrate layer for impact resistance, an optically selective coating providing high photopic transmittance, continuous high electrical conductivity for RFI shielding, and reflectivity specifically within the near-IR region, and an IR absorbing coating for absorbing IR energy emissions. In a preferred embodiment, the IR absorbing coating constitutes a dye material which is preferably selected to also be color-correcting with respect to the particular PDP.