Abstract:
Apparatus and methods implement aggregation frames and allocation frames. The aggregation frames include a plurality of MSDUs or fragments thereof aggregated or otherwise combined together. An aggregation frame makes more efficient use of the wireless communication resources. The allocation frame defines a plurality of time intervals. The allocation frame specifies a pair of stations that are permitted to communicate with each other during each time interval as well as the antenna configuration to be used for the communication. This permits stations to know ahead of time when they are to communicate, with which other stations and the antenna configuration that should be used. A buffered traffic field can also be added to the frames to specify how much data remains to be transmitted following the current frame. This enables network traffic to be scheduled more effectively.
Abstract:
A data rate controlling feedback loop evaluates an actual instantaneous available quality of service of a communication link for transmitting data and controls the data rate based on an evaluation result, Feedback control may both be local to a device for acquiring examination data, such as a magnetic resonance imaging coil, or over the communication link by reducing the data rate at least momentarily to fit the communication link's performance over time, enabling a graceful degradation of an image quality at lower data rates.
Abstract:
A method for generating a preamble of an Orthogonal Frequency Division Multiplexed (OFDM) data frame for a multiple input multiple output (MIMO) wireless communication includes determining at least one system condition preamble format parameter. When the system condition preamble format parameter satisfies a first preamble format parameter a preamble having a first preamble format is formed. When the system condition preamble format parameter satisfies a second preamble format parameter, a preamble having a second preamble format is formed. Further, when the system condition preamble format parameter satisfies a third preamble format parameter, a preamble having a third preamble format is formed. The first, second, and third preamble formats differ based upon their lengths, fields, and modulation formats of a high throughput signal field.
Abstract:
Provided is a data transmission system for transmitting control information from a terminal to a base station. The terminal may multiplex the control information, and may transmit the multiplexed control information to the base station using a plurality of transmit antennas. The base station may receive the multiplexed control information and combine the control information. The base station may transmit data to the terminal using the control information.
Abstract:
The specification and drawings present a new method, system, apparatus and software product for defining an adaptive preamble length of a preamble for a continuous connectivity transmission using a control channel, e.g., a UL (uplink) dedicated physical control channel (DPCCH), for transmitting the preamble. Such a preamble would reduce the accuracy requirement for the initial power setting after a transmission gap and also help the channel estimation and the synchronization of a data channel, e.g., an enhanced dedicated channel (E-DCH). The preamble length can be optimized and defined using a predetermined criterion depending on: a) a degree of fading of a multipath channel which is used for transmitting data on the data channel and/or b) a throughput relative to a nominal throughput in the data channel.
Abstract:
A method for communicating with a network is presented. The method includes receiving an assignment of first timeslots for uplink communications, and receiving a first data block having a first block sequence number and including an instruction to reduce monitoring to a set of timeslots. The set of timeslots has a number of timeslots less than a number of timeslots to be monitored in accordance with the assignment. The method includes determining that at least one second data block having a second block sequence number that is less than the first block sequence number was not successfully received from the network, reducing a number of timeslots monitored to the set of timeslots, and receiving a retransmission of the at least one second data block from the network using a timeslot in the set of timeslots.
Abstract:
Apparatus and methods implement aggregation frames and allocation frames. The aggregation frames include a plurality of MSDUs or fragments thereof aggregated or otherwise combined together. An aggregation frame makes more efficient use of the wireless communication resources. The allocation frame defines a plurality of time intervals. The allocation frame specifies a pair of stations that are permitted to communicate with each other during each time interval as well as the antenna configuration to be used for the communication. This permits stations to know ahead of time when they are to communicate, with which other stations and the antenna configuration that should be used. A buffered traffic field can also be added to the frames to specify how much data remains to be transmitted following the current frame. This enables network traffic to be scheduled more effectively.
Abstract:
The disclosure provides a method and terminal for feeding back channel state information. The method comprises: a UE determining channel state information comprising a first type of PMI and a second type of PMI, wherein the first type of PMI is used for indicating an index of a first precoding matrix in a first precoding codebook, the first precoding matrix is used for mapping channel information of a wideband and/or long-term channel, the second PMI is used for indicating an index of a second precoding matrix in a second precoding codebook, the second precoding matrix is used for mapping channel information of a subband and/or short-term channel; the UE feeding back the channel state information on a PUSCH. The disclosure enables a base station to dynamically select SU-MIMO or MU-MIMO transmission according to the practical channel condition so as to effectively improve the system performance.
Abstract:
A segmented access based signal transmitting/receiving method and a sequence allocating method for the same are disclosed. According to one embodiment of the present invention, a method of transmitting a signal of a user equipment in a communication system includes selecting a channel in accordance with at least one selected from the group consisting of a signal attenuation extent of a downlink signal to the user equipment and a speed of the user equipment from channels differently provided based on at least one selected from the group consisting of the signal attenuation extent of the downlink signal and the speed of the user equipment and transmitting the signal using the selected channel.
Abstract:
The invention relates to the control and adaptation of transmit parameters for wireless communication between a transmitter (TX) and at least one receiver (RX) to provide joint power and link adaptation. A basic idea of the invention is to collectively determine the transmit duration (T) and transmit power (P) of the transmitter based on minimization of a given objective function representative of total consumed energy, on both the transmitting side and the receiving side, with respect to transmit duration and/or transmit power. In effect, this means that link transmit parameters are determined based on the energy consumption on both the transmitting side and the receiving side. In addition, both transmit power and transmit duration are varied, while minimizing overall consumed energy.