Abstract:
Systems and methods are disclosed for receiving IP video and audio signals at a subscriber's premises. A QAM modulator then modulates the IP signals and provides the modulated signals to a conventional digital home communications terminal (DHCT). Accordingly, conventional DHCTs can be used in an IP-based network.
Abstract:
An optical signal occupying one or more wavelengths. An optical data signal on each wavelength is modulated with a respective overhead (dither) signal, resulting in a respective dithered optical signal. The amplitude of a particular overhead signal used to modulate the corresponding optical data signal is chosen so that the RMS value of the overhead signal in the dithered optical signal is proportional to the average intensity of the optical data signal. The instantaneous frequency of each overhead signal is time-varying and each possible frequency belongs to a distinct set of frequencies which are all harmonically related to a fundamental frequency. The distinctness of each set of frequencies allows each overhead signal to be uniquely isolated from an aggregate overhead signal. The harmonic relationship among the frequencies allows improved accuracy of RMS detection at a receiver as well as reduced computational complexity, as each possible frequency for each overhead signal can be made to fall at the center of one of the frequency bins of a single FFT of reasonable size performed at a receiver. Methods and systems for generating and detecting such signals are disclosed.
Abstract:
A use of the invention permits to increase the transmission rate of existing communication lines or their capacity. The method is in that, at the transmitting side: a first and second analog signals are formed from a first and second sequences of digital information samples, the first analog signal being formed from a difference of values of digital information samples of the first sequence and values of digital information samples of the second sequence taken in points of digital information samples of the first sequence, and the second analog signal being formed from digital information samples of the second sequence taken in points of digital information samples of the second sequence, which are between the points of digital information samples of the first sequence, after which the first and second analog signals are summed, and the summary analog signal is transmitted to a communication line; and at the receiving side: the first sequence of digital information samples is restored by means of sampling the summary analog signal with a clock frequency, then the first sequence of digital information samples is converted to the analog signal of the first sequence using the predetermined sampling function, said analog signal of the first sequence is subtracted from the summary analog signal, and the second sequence of digital information samples is restored from the obtained difference analog signal.
Abstract:
Methods and devices for sending, transmitting and/or receiving information by means of waves, in which an information signal of a carrier wave is impressed, whose frequency is continuously changed to form at least one carrier sweep in a predetermined time interval and in which the information signal is filtered to separate multipath components after being received in the frequency range or is cleaned of noise portions and then evaluated with respect to the information-bearing signal parameters.
Abstract:
An integrated circuit is configured to receive encoded digital data from a system controller over a single signal line. The system controller encodes the digital data into a singular analog quantity such as a voltage, a current, a sine wave frequency, a sine wave amplitude, a pulse train frequency, or a pulse train duty cycle. The encoded digital data is transmitted to the signal line. The integrated circuit decodes the digital data from the signal line. The decoded digital data is employed by the integrated circuit to adjust one or more parameters of the integrated circuit. In one example, one or more parameters may be adjusted to select various operating modes for the integrated circuit. The singular analog quantity encoding/decoding methodology may be extended to more than one signal line when desirable.
Abstract:
A use of the invention permits to increase the transmission rate of existing communication lines or their capacity. The method is in that, at the transmitting side: a first and second analog signals are formed from a first and second sequences of digital information samples, the first analog signal being formed from a difference of values of digital information samples of the first sequence and values of digital information samples of the second sequence taken in points of digital information samples of the first sequence, and the second analog signal being formed from digital information samples of the second sequence taken in points of digital information samples of the second sequence, which are between the points of digital information samples of the first sequence, after which the first and second analog signals are summed, and the summary analog signal is transmitted to a communication line; and at the receiving side: the first sequence of digital information samples is restored by means of sampling the summary analog signal with a clock frequency, then the first sequence of digital information samples is converted to the analog signal of the first sequence using the predetermined sampling function, said analog signal of the first sequence is subtracted from the summary analog signal, and the second sequence of digital information samples is restored from the obtained difference analog signal.
Abstract:
Systems and methods are disclosed for providing reverse signals from a plurality of DHCTs to a downstream modulator that is located in the headend facility. The present invention includes a single wire return device (SWRD) that receives RF modulated signals, dynamically determines the address of the associated modulator, and converts the signals into Ethernet signals. The Ethernet signals are subsequently provided to the headend facility via fiber cable.
Abstract:
The RF communications system of the present invention wirelessly communicates data without encountering undue interference problems with other devices and complies with rules governing unlicensed, spectrum-sharing devices. In an example embodiment, a transmitter device includes a digital subsystem powered by a power supply that processes data from another device and a radio frequency (RF) sub-system that transmits the processed data using a frequency hopping scheme. The RF sub-system includes a microprocessor arrangement that ON-OFF keys a voltage controlled oscillator (VCO) and provides a frequency-hopping scheme. The VCO is coupled to a signal frequency spreading arrangement that spreads the signal to a predetermined transmission bandwidth, wherein the frequency spreading occurs during an ON state of the ON-OFF keying and the transmission bandwidth exceeds a reception bandwidth at which the signal will be decoded.
Abstract:
The present invention provides a method for blind separation of independent source signals. The preceding is accomplished by disclosing new techniques for dealing with the problem of blind separation of independent source signals. The method of the present invention consists of identifying a simple constrained criterion which stems directly from derived conditions for source separation. Using this criterion, observed and output signals are used to control a filtering matrix. After being initialized, the filtering matrix is updated and projected to the closest unitary matrix. Until the filtering matrix has converged, it continues to be updated and projected to the closest unitary matrix. Once convergence has occurred, the source signals have been recovered.
Abstract:
A system for transmitting electrical signals between a computer and peripherals along a twisted pair cable. The system includes a computer interface, a peripheral interface and a twisted pair cable in communication between the computer interface and the peripheral interface. Video and audio signals from the computer are transmitted via the twisted pair cable to the peripherals. Peripheral signals can also be communicated between the computer and peripherals via the twisted pair cable.