Abstract:
An optical signal occupying one or more wavelengths. An optical data signal on each wavelength is modulated with a respective overhead (dither) signal, resulting in a respective dithered optical signal. The amplitude of a particular overhead signal used to modulate the corresponding optical data signal is chosen so that the RMS value of the overhead signal in the dithered optical signal is proportional to the average intensity of the optical data signal. The instantaneous frequency of each overhead signal is time-varying and each possible frequency belongs to a distinct set of frequencies which are all harmonically related to a fundamental frequency. The distinctness of each set of frequencies allows each overhead signal to be uniquely isolated from an aggregate overhead signal. The harmonic relationship among the frequencies allows improved accuracy of RMS detection at a receiver as well as reduced computational complexity, as each possible frequency for each overhead signal can be made to fall at the center of one of the frequency bins of a single FFT of reasonable size performed at a receiver. Methods and systems for generating and detecting such signals are disclosed.
Abstract:
An optical signal occupying one or more wavelengths. An optical data signal on each wavelength is modulated with a respective overhead (dither) signal, resulting in a respective dithered optical signal. The amplitude of a particular overhead signal used to modulate the corresponding optical data signal is chosen so that the RMS value of the overhead signal in the dithered optical signal is proportional to the average intensity of the optical data signal. The instantaneous frequency of each overhead signal is time-varying and each possible frequency belongs to a distinct set of frequencies which are all harmonically related to a fundamental frequency. The distinctness of each set of frequencies allows each overhead signal to be uniquely isolated from an aggregate overhead signal. The harmonic relationship among the frequencies allows improved accuracy of RMS detection at a receiver as well as reduced computational complexity, as each possible frequency for each overhead signal can be made to fall at the center of one of the frequency bins of a single FFT of reasonable size performed at a receiver. Methods and systems for generating and detecting such signals are disclosed.
Abstract:
An optical signal occupying one or more wavelengths. An optical data signal on each wavelength is modulated with a respective overhead (dither) signal, resulting in a respective dithered optical signal. The amplitude of a particular overhead signal used to modulate the corresponding optical data signal is chosen so that the RMS value of the overhead signal in the dithered optical signal is proportional to the average intensity of the optical data signal. The instantaneous frequency of each overhead signal is time-varying and each possible frequency belongs to a distinct set of frequencies which are all harmonically related to a fundamental frequency. The distinctness of each set of frequencies allows each overhead signal to be uniquely isolated from an aggregate overhead signal. The harmonic relationship among the frequencies allows improved accuracy of RMS detection at a receiver as well as reduced computational complexity, as each possible frequency for each overhead signal can be made to fall at the center of one of the frequency bins of a single FFT of reasonable size performed at a receiver. Methods and systems for generating and detecting such signals are disclosed.
Abstract:
A request method for performing optical power management to accomplish planned addition and removal of wavelengths in an optical communications system is disclosed, wherein each wavelength has a path of transmission through the system. The method comprises communicating a request for a power ramp to at least one path network component in the path, determining that the path network component has made preparations for the power ramp, and performing a power ramp in response to the determination. Further, a response method for performing power management to accomplish planned addition and removal of wavelengths in an optical communications system is disclosed, wherein each wavelength has a path of transmission through the system. The method comprises receiving a request for a power ramp, making preparations for the power ramp, determining that the power ramp has been completed, and resuming normal operation in response to the determination.
Abstract:
A method for dynamically compensating for signal loss and dispersion in an optical signal traversing though an optical network. The method includes providing a dynamic gain equalization filter (DGEQ) having a dynamically adjustable transfer function, and providing a first optical amplifier and a second optical amplifier interconnected by the DGEQ to form a dynamic amplifier site in the optical network. The method further includes controlling spectral power profile of the optical signal at an output of the dynamic amplifier site by dynamically adjusting a transfer function associated with the DGEQ.
Abstract:
An improved optical power transient control scheme is provided for optical amplifiers used in long haul, high capacity DWDM optical networks. The optical power transient control scheme employs a combination of feed-forward and feedback control mechanisms to adjust the pump laser current of an amplifier. In this way, the optical power transient control scheme allows for very fast detection of transient changes in optical input power and fast control settling time with minimal optical power degradation.