Abstract:
Pairs of distributed feedback (DFB) lasers are provided on a substrate. An arrayed waveguide grating (AWG) is also provided on the substrate having input waveguides, each of which being connected to a corresponding pair of DFB lasers. The wavelengths of optical signals supplied from each pair of DFB lasers may be spectrally spaced from one another by a free spectral range (FSR) of the AWG. By selecting either a first or second DFB laser in a pair and temperature tuning to adjust the wavelength, each pair of DFB lasers can supply optical signals at one of four wavelengths, pairs of which are spectrally spaced from one another by the FSR of the AWG. A widely tunable transmitter may thus be obtained.
Abstract:
A polarization-multiplexed (POLMUX) optical orthogonal frequency division multiplexing (OFDM) system with direct detection includes an adaptive dual POLMUX carrier OFDM transmitter; and a block symmetric (B-S) MIMO equalizer coupled to the adaptive dual POLMUX carrier OFDM transmitter through a standard single-mode-fiber (SSMF) feedback path.
Abstract:
An equaliser (200) for equalisation of a signal transmitted via an optical fibre link from a transmitter to a corresponding receiver employs a backpropagation model (300) which comprises one or more sequential segments collectively representing an inverse fibre link. Each sequential segment comprises a linear backpropagation element (304), and a non-linear backpropagation element (306) having an associated compensation bandwidth (312). The equaliser (200) generates a distortion-mitigated signal by computing, for each sequential segment in turn, a first linear compensated signal from a signal input to the segment in accordance with the linear backpropagation element (304), and a non-linear compensated signal from the first linear compensated signal in accordance with the non-linear backpropagation element (306). Computation of the non-linear compensation signal comprises limiting a bandwidth of a compensation signal derived from the first linear compensated signal in accordance with the associated compensation bandwidth (312).
Abstract:
In various embodiments, a monolithic integrated transmitter, comprising an on-chip laser source and a modulator structure capable of generating advanced modulation format signals based on amplitude and phase modulation are described.
Abstract:
The present invention relates to an optical access system for dual service network, which mainly comprises an optical modulation device which is used to receive on-off keying (OOK) signal from cable network and radio frequency (RF) signal from wireless network, the optical modulation device then modulates the OOK signal and the RF signal to an optical signal and send out an output optical signal. Lastly, the output optical signal is being delivered to an optical receiving device through an optical fiber transmission channel, and the optical receiving device can access the OOK signal and RF signal from the output optical signal. In addition, the present invention does not require remote nodes (receiver side) to use any optical filter to discern on-off keying signal from cable network and RF signal from wireless network. The present invention can also apply to the field of wavelength-division multiplexing system.
Abstract:
An optical transmission system is provided with an optical transmission apparatus, an optical reception apparatus, an optical transmission line redundantly configured with an active system optical transmission line and an standby system optical transmission line, an optical switch that switches an optical transmission line between the active system optical transmission line and the standby system optical transmission line, a variable dispersion compensator placed between the optical switch and the optical reception apparatus, a dispersion amount measuring unit that measures the dispersion amount of the standby system optical transmission line when the active system optical transmission line is being selected by the optical switch, a dispersion compensation amount setting unit that sets the amount of dispersion compensation to be applied to the standby system optical transmission line based on the measured dispersion amount of the standby system optical transmission line, and a control unit that controls, when the optical transmission line is switched from the active system optical transmission line to the standby system optical transmission line by the optical switch, the variable dispersion compensator so that the amount of dispersion compensation becomes the set amount of dispersion compensation.
Abstract:
An optical fiber that propagates light over a use wavelength bandwidth of 100 nm or wider in a plurality of propagation modes is provided. The optical fiber has: a confinement loss equal to or less than 1 dB/km in each of the plurality of propagation modes over the use wavelength bandwidth; and a bending loss equal to or less than 100 dB/m in each of the plurality of propagation modes over the use wavelength bandwidth when the optical fiber is bent at a diameter of 20 mm.
Abstract:
An optical reception device is provided. The optical reception device includes a filtering unit that receives input light of predetermined power, filters the input light by use of filter characteristics where the degree of attenuation of the power of an optical signal of predetermined frequency is lower than the degree of attenuation of the power of an optical signal of another frequency, and supplies an output light; and a determining unit that compares a value relevant to the power of the output light supplied by the filtering unit, with a threshold, and determines whether the input light contains signal light.
Abstract:
A wavelength selective switch (WSS) based on an array of MEMS mirrors tiltable in 1-dimension about only one axis exhibits “hitting” or unwanted port connections during switching. Two WSS's can be cascaded to create M×N switching functionality in a hitless manner by the inclusion of block ports at specified positions in one or both of the WSS's. Greater use efficiency of ports can be achieved if quasi-hitless performance is acceptable.
Abstract:
A chromatic dispersion compensation system for an optical transmission system incorporates circuitry which determines the length of an optical fiber extending between an output amplifier and an input amplifier. Based on fiber type, the total chromatic dispersion on the fiber is determined. Compensation can then be automatically implemented.