Abstract:
A compact wavelength dispersing device and a wavelength selective optical switch based on the wavelength dispersing device is described. The wavelength dispersing device has a folding mirror that folds the optical path at least three times. A focal length of a focusing coupler of the device is reduced and the NA is increased, while the increased optical aberrations are mitigated by using an optional coma-compensating wedge. A double-pass arrangement for a transmission diffraction grating allows further focal length and overall size reduction due to increased angular dispersion.
Abstract:
A multicast optical switch uses a diffractive bulk optical element, which splits at least one input optical beam into sub-beams, which freely propagate in a medium towards an array of directors, such as MEMS switches, for directing the sub-beams to output ports. Freely propagating optical beams can cross each other without introducing mutual optical loss. The amount of crosstalk is limited by scattering in the optical medium, which can be made virtually non-existent. Therefore, the number of the crossover connections, and consequently the number of inputs and outputs of a multicast optical switch, can be increased substantially without a loss or a crosstalk penalty.
Abstract:
A wavelength selective switch (WSS) based on an array of MEMS mirrors tiltable in 1-dimension about only one axis exhibits “hitting” or unwanted port connections during switching. Two WSS's can be cascaded to create M×N switching functionality in a hitless manner by the inclusion of block ports at specified positions in one or both of the WSS's. Greater use efficiency of ports can be achieved if quasi-hitless performance is acceptable.
Abstract:
A chromatic dispersion compensator in a single-pass and a double-pass version is disclosed. In a single-pass version, the compensator has a diffractive grating for spatially separating an input optical signal into spatially spaced frequency components and a MEMS array of separate phase shifters, each for imparting an independent phase shift to a channel containing a range of the spatially spaced frequency components. In a double-pass version, a retroreflector is disposed to effect a double pass of the light beam through the grating and the phase shifters. The arrangement is effecting in reducing chromatic dispersion of the optical signal.
Abstract:
A method and a controller for operating an array of variable optical retarders are disclosed. Neighboring pixels of the array of variable optical retarders are driven with disordered temporal bit sequences. An optical beam illuminating the pixels tends to integrate time-domain modulation caused by individual pixels driven in a non-coordinated or disordered fashion, which reduces the overall time-domain modulation amplitude of the optical beam.
Abstract:
By steering wanted diffraction orders within a concentrated angular region and steering all unwanted diffraction orders outside that region, a wavelength selective switch achieves high port isolation and densely spaced ports. N inputs receive an optical signal. Optics spatially separate and direct wavelength channels from the signal. A phased array switching engine comprising cells steers a wanted diffraction order of each spatially separated wavelength channel from each cell at an angle within a concentrated angular region relative to the PASE, and steers all unwanted diffraction orders of spatially separated wavelength channels from cells outside the concentrated angular region. Optics direct each wanted diffraction order to one of N outputs in accordance with the steering of the wanted diffraction orders by the PASE. The concentrated angular region is defined by a largest and smallest steering angle wherein the largest steering angle is a margin less than the smallest steering angle.
Abstract:
A wavelength selective switch (WSS) based on an array of MEMS mirrors tiltable in 1-dimension about only one axis exhibits “hitting” or unwanted port connections during switching. Two WSS's can be cascaded to create M×N switching functionality in a hitless manner by the inclusion of block ports at specified positions in one or both of the WSS's. Greater use efficiency of ports can be achieved if quasi-hitless performance is acceptable.
Abstract:
The invention relates to fiber-optic wavelength dispersive devices incorporating a wavelength dispersive reflector that provides auto-compensation of variations of output spectral characteristic with temperature and includes a transmissive dispersion that is followed by a beam-folding reflecting surface in a double-pass configuration grating and is coupled to a wedged shaped prism.
Abstract:
This invention relates to elements such as birefringent crystals, which are used to separate a non-collimated input beam into two orthogonally polarized sub-beams or to combine two orthogonally polarized beams into a single beam. The optical device lessens or obviates the optical path length difference encountered in prior art devices and provides a polarization beam splitter/combiner that has substantially same optical path lengths for two split or combined beams propagating therethrough. Alternatively, the device is designed to provide a selected path length difference to compensate for polarization mode dispersion in other optical devices. The polarization beam splitter/combiner in accordance with the invention has a first uniaxial crystal having an o-ray path and an e-ray path and having the first port disposed at an end face thereof; a second uniaxial crystal having an o-ray path and an e-ray path, the e-ray path of the second uniaxial crystal being optically coupled with the o-ray path of the first uniaxial crystal and the o-ray path of the second uniaxial crystal being optically coupled with the e-ray path of the first uniaxial crystal. Alternatively, the axis of the second crystal is aligned in such a manner that the o-ray path is retarded by an extraordinary index of refraction of the crystal and the e-ray path is retarded by an ordinary index of refraction to equalize the optical path lengths.
Abstract:
A multicast optical switch uses a diffractive bulk optical element, which splits at least one input optical beam into sub-beams, which freely propagate in a medium towards an array of directors, such as MEMS switches, for directing the sub-beams to output ports. Freely propagating optical beams can cross each other without introducing mutual optical loss. The amount of crosstalk is limited by scattering in the optical medium, which can be made virtually non-existent. Therefore, the number of the crossover connections, and consequently the number of inputs and outputs of a multicast optical switch, can be increased substantially without a loss or a crosstalk penalty.