Abstract:
An optical communication system includes a polarization multiplexed orthogonal frequency-division multiplexing POLMUX-OFDM transmitter for generating a POLMUX-OFDM double sideband signal, an optical processing path for processing the double sideband signal from the transmitter; an analog-to-digital convert ADC-OFDM receiver coupled to the optical processing path for receiving the double sideband signal processed by the optical path; and a block-diagonal multiple-input multiple-output MIMO equalizer responsive to the receiver for enabling correct operation for a completely random incoming signal polarization state without adaptive polarization control at said receiver, which enables complexity.
Abstract:
Methods and systems for processing communication signals in an Orthogonal Frequency Division Multiple Access (OFDMA)-Passive Optical Network (PON) are disclosed. An optical carrier at a wavelength generated at an optical line terminal (OLT) may be reused by optical network units (ONUs) in the network for upstream transmission of data signals to the OLT. In addition, each ONU may perform carrier suppression to avoid broadband beating noise resulting from the simultaneous transmission of upstream data signals on the same wavelength. Further, the optical source at the OLT used to generate the optical carrier may be reused as a local oscillator for coherent detection of received upstream signals to minimize any frequency offsets.
Abstract:
Methods and systems for processing communication signals in an Orthogonal Frequency Division Multiple Access (OFDMA)-Passive Optical Network (PON) are disclosed. An optical carrier at a wavelength generated at an optical line terminal (OLT) may be reused by optical network units (ONUs) in the network for upstream transmission of data signals to the OLT. In addition, each ONU may perform carrier suppression to avoid broadband beating noise resulting from the simultaneous transmission of upstream data signals on the same wavelength. Further, the optical source at the OLT used to generate the optical carrier may be reused as a local oscillator for coherent detection of received upstream signals to minimize any frequency offsets.
Abstract:
The present invention employs a look up table based implementation for the metric computations which eliminate redundancy and substantially reduce the number of multiplications. Moreover, inventive method exploits the fact that the un-normalized constellation symbols are complex integers so that the product of a real-number and an un-normalized constellation symbol can be implemented by only additions. The inventive method also enables a greater efficiency for whitening colored noise prior to demodulation, one of which involves no square-root operation. The invention results in less complexity, faster operation, lower power consumption, without sacrificing performance.
Abstract:
A method for joint transmitter and receiver processing for computationally efficient equalization in polarization multiplexed (POLMUX) optical orthogonal frequency division multiplexed (OFDM) transmission with direct detection.
Abstract:
A method by an optical network unit ONU includes, for downstream transmission, using a first tunable laser for coherent detection on a sub-band basis to increase receiver sensitivity and reduce analog-to-digital conversion ADC and digital signal processor DSP requirements within the ONU, and for upstream transmission, using a second tunable laser and using an optical signal beating between the first and second tunable lasers to generate a tunable radio frequency RF signal source for upstream multi-band OFDMA signal generation thereby avoiding need for an otherwise more costly RF clock source within the ONU, enabling low-speed digital-to-analog conversion DAC operation and rendering the ONU colorless in both optical and radio frequency RF domains.
Abstract:
A Wavelength Division Multiplexed Orthogonal Frequency Division Multiple Access Passive Optical Network (WDM-OFDMA-PON) includes a passive last-mile optical split terminated by optical network units (ONUs) with OFDMA transceivers; a standard single mode fiber (SSMF) link; a central office optical line terminal (CO-OLT) coupled to SSMF link and the passive last-mile optical split, wherein the CO-OLT comprises an OFDMA transceiver, burst-mode-free operation, inline optical dispersion compensation free operation, and WDM-enabled operation.
Abstract:
A method by an optical network unit ONU includes, for downstream transmission, using a first tunable laser for coherent detection on a sub-band basis to increase receiver sensitivity and reduce analog-to-digital conversion ADC and digital signal processor DSP requirements within the ONU, and for upstream transmission, using a second tunable laser and using an optical signal beating between the first and second tunable lasers to generate a tunable radio frequency RF signal source for upstream multi-band OFDMA signal generation thereby avoiding need for an otherwise more costly RF clock source within the ONU, enabling low-speed digital-to-analog conversion DAC operation and rendering the ONU colorless in both optical and radio frequency RF domains.
Abstract:
A method for joint transmitter and receiver processing for computationally efficient equalization in polarization multiplexed (POLMUX) optical orthogonal frequency division multiplexed (OFDM) transmission with direct detection.
Abstract:
A method for multi-service provisioning in an OFDMA-PON that includes linking communicatively to a core network and bandwidth provisioning, dynamically within a single wavelength, traffic from the core network to a network of multiple virtual passive optical networks VPONs for multi-service provisioning to the VPONs.