Abstract:
Insulation materials have a coating of a partially cured polymer on a plurality of fibers, and the plurality of coated fibers in a cross-linked polymeric matrix. Insulation may be formed by applying a preceramic polymer to a plurality of fibers, heating the preceramic polymer to form a partially cured polymer over at least portions of the plurality of fibers, disposing the plurality of fibers in a polymeric material, and curing the polymeric material. A rocket motor may be formed by disposing a plurality of coated fibers in an insulation precursor, curing the insulation precursor to form an insulation material without sintering the partially cured polymer, and providing an energetic material over the polymeric material. An article includes an insulation material over at least one surface.
Abstract:
Composite material, devices incorporating the composite material and methods of forming the composite material are provided. The composite material includes interstitial material that has at least one of a select relative permittivity property value and a select relative permeability property value. The composite material further includes inclusion material within the interstitial material. The inclusion material has at least one of a select relative permeability property value and a select relative permittivity property value. The select relative permeability and permittivity property values of the interstitial and the inclusion materials are selected so that the effective intrinsic impedance of the interstitial and the inclusion material match the intrinsic impedance of air. Devices made from the composite include metamaterial and/or metamaterial-inspired (e.g. near-field LC-type parasitic) substrates and/or lenses, front-end protection, stealth absorbers, filters and mixers. Beyond the intrinsic, applications include miniature antenna and antenna arrays, directed energy weapons, EMI filters, RF and optical circuit components, among others.
Abstract:
A projectile assembly comprises a base portion for receiving projectiles such as slugs and has an associated pusher plate at a rear end thereof for minimizing or controlling deformation of the rear end of the base portion during firing. The pusher plate has a disc with one or more axially extending projections that extend axially into the rearward end of the base portion thereby reinforcing the base portion and upon firing providing uniform axial deformation and/or obturation of the base portion with respect to a firearm barrel. The projectile assembly may be, for example, part of a shotgun shell slug cartridge, and provides enhanced accuracy over the prior art.
Abstract:
Propellant compositions include an energetic binder, such as nitrocellulose, and a stabilized, encapsulated red phosphorous as a ballistic modifier. The propellant composition may additionally include an energetic plasticizer, such as nitroglycerine. For example, the propellant composition may be formed by mixing a double or multi base propellant that includes nitrocellulose plasticized with nitroglycerine with the stabilized, encapsulated red phosphorus. The propellant compositions may be substantially lead-free and may exhibit improved ballistic properties. Methods of forming such propellant compositions and an ordnance device including such propellant compositions are also disclosed.
Abstract:
A fire suppression system for producing an inert gas mixture having a minimal amount of carbon monoxide, particulates, or smoke. The inert gas mixture may be generated by combusting a gas generant. The gas generant may be a composition that includes hexa(ammine)-cobalt(III)-nitrate. The fire suppression system also includes a heat management system to reduce a temperature of the inert gas mixture. A method of extinguishing fires is also disclosed.
Abstract:
A safety and arming apparatus for use with a projectile includes a rotor pivotable between a safe position and an armed position. A biasing element holds a mass engaged with the rotor to restrain the rotor from rotation and is deformable to allow the mass to displace and disengage from the rotor in response to a setback force on the projectile. A second biasing element includes a displaceable end for engaging with the rotor to restrain the rotor from rotation and is deformable to disengage the displaceable end from the rotor in response to projectile spin. A piston actuator can rotate the rotor to the armed position if the mass is disengaged and the displaceable end is disengaged. A detonator on the rotor can be aligned with a detonation cord when the rotor is in the armed position and unaligned when the rotor is in the safe position.
Abstract:
A combustor including a housing, an injector body, insulation, an air/fuel premix injector, a hot surface igniter, a fuel injector and a burner. The housing forms a main combustion chamber. The injector body is coupled within the housing, the injector body includes an initial combustion chamber. The insulation lines the initial combustion chamber. The air/fuel premix injector assembly is configured and arranged to dispense a flow of air/fuel mixture into the initial combustion chamber. The hot surface igniter is configured and arranged to heat up and ignite the air/fuel mixture in the initial combustion chamber. The fuel injector dispenses a flow of fuel and the burner dispenses a flow of air. The flow of fuel from the fuel injector and the flow of air from the burner are ignited in the main combustion chamber by the ignition of the air/fuel mixture in the initial combustion chamber.
Abstract:
A downhole combustor system for a production well is provided. The downhole combustor includes a housing, a combustor and an exhaust port. The housing is configured and arranged to be positioned down a production well. The housing further forms a combustion chamber. The combustor is received within the housing. The combustor is further configured and arranged to combust fuel in the combustion chamber. The exhaust port is positioned to deliver exhaust fumes from the combustion chamber into a flow of oil out of the production well.
Abstract:
The present invention provides O-nitro compounds, pharmaceutical compositions of O-nitro compounds and methods of using O-nitro compounds and/or pharmaceutical compositions thereof to treat or prevent diseases or disorders characterized by abnormal cell proliferation, such as cancer, inflammation, cardiovascular disease and autoimmune disease.