Abstract:
This invention, in general, relates to the field of telecommunications. More particularly, the present invention relates to a centralized system and method for providing customized applications for mobile networks enhanced logic CAMEL roaming services to a mobile subscriber. The CAMEL HUB configured to process a request from the mobile subscriber to avail one or more mobile services from a visited network operator. The mobile subscriber device has a subscription to a home network operator and operates in a home CAMEL phase. The visited network operator operates in a visited CAMEL phase. The CAMEL HUB is also configured to allow the mobile subscriber device to avail the one or more mobile services seamlessly from the visited network operator independent of the visited CAMEL phase. The home CAMEL phase may or may not be different from the visited CAMEL phase.
Abstract:
An echo canceller for improved recognition and removal of an echo from a communication device. The echo canceller can dynamically reduce echo using an improved energy estimator and an improved adaptive filter. The improved energy estimator can determine if conversation is in a single talk period or a double talk period based on the combined energy of both the near end background noise and speech. The improved adaptive filter can reduce echo by dynamically changing adaptation speed or step size. In double talk, the adaptive filter(s) can dynamically slow-down or stop adaptation. In single talk, the filter can dynamically increase the speed of adaptation to improve accuracy, or decrease adaptation speed for stability.
Abstract:
A method and system for automatically identifying optimal meeting locations. The method includes receiving a plurality of meeting parameters associated with one or more participants. The method also includes identifying a list of optimal meeting locations relevant to one or more of the plurality of meeting parameters. The method further includes ranking the list of optimal meeting locations. Further, the method includes enabling a user to select an optimal meeting location from the list of optimal meeting locations. The system includes one or more electronic devices and a user electronic device. The user electronic device includes a communication interface, a memory, and a processor.
Abstract:
A switching network includes an upper tier including a master switch and a lower tier including a plurality of lower tier entities. The master switch includes a plurality of ports each coupled to a respective one of the plurality of lower tier entities. Each port includes a plurality of virtual ports each corresponding to a respective one of a plurality of remote physical interfaces (RPIs) at the lower tier entity coupled to that port. Each port also includes a receive interface that, responsive to data traffic from a particular lower tier entity, queues the data traffic to the virtual port that corresponds to the RPI on the particular lower tier entity that was the source of the data traffic. The master switch further includes a switch controller that switches data traffic from the virtual port to an egress port from which the data traffic is forwarded.
Abstract:
A communications cabinet includes a housing defining a location for mounting communications equipment, the housing having a wall formed of a first material with a first penetration resistance, a vent opening in the wall, and a door. At least one plate of material having a second penetration resistance greater than or about equal to the first penetration resistance is mounted between the vent opening and the location for mounting the communications equipment, and the plate is positioned to stop projectiles larger than a given size from traveling in a straight line from the at least one vent opening to the location for mounting communication equipment while leaving an airflow path from the vent opening to the location for mounting the communications equipment that passes around at least one edge of the plate of material through a gap between the at least one plate and the wall.
Abstract:
Techniques to prioritize and optimize the execution of upgrade operations are described. A technique may include determining the size of data blocks that are to be copied from one storage medium to another, and the dependencies of upgrade tasks on the data blocks and on other tasks. A task may be prioritized according to a weight that includes the cumulative sizes of the data blocks that it and its dependent tasks depend on. A data block copying may be prioritized according to the cumulative weights of the tasks that depend on that data block. Some embodiments may perform several data copying and/or tasks in parallel, rather than sequentially. Other embodiments are described and claimed.
Abstract:
Methods and systems for automatically generating a mask delineating a region of interest (ROI) within an image containing skin are disclosed. The image may be of an anatomical area containing skin, such as the face, neck, chest, shoulders, arms or hands, among others, or may be of portions of such areas, such as the cheek, forehead, or nose, among others. The mask that is generated is based on the locations of anatomical features or landmarks in the image, such as the eyes, nose, eyebrows and lips, which can vary from subject to subject and image to image. As such, masks can be adapted to individual subjects and to different images of the same subjects, while delineating anatomically standardized ROIs, thereby facilitating standardized, reproducible skin analysis over multiple subjects and/or over multiple images of each subject. Moreover, the masks can be limited to skin regions that include uniformly illuminated portions of skin while excluding skin regions in shadow or hot-spot areas that would otherwise provide erroneous feature analysis results. Methods and systems are also disclosed for automatically registering a skin mask delineating a skin ROI in a first image captured in one imaging modality (e.g., standard white light, UV light, polarized light, multi-spectral absorption or fluorescence imaging, etc.) onto a second image of the ROI captured in the same or another imaging modality. Such registration can be done using linear as well as non-linear spatial transformation techniques.
Abstract:
A semiconductor device exhibiting enhanced carrier mobility within a channel region of the semiconductor device is disclosed. The semiconductor device includes a gate stack having first and second sidewall spacers, where the gate stack is implemented above the channel region of the semiconductor device. The semiconductor device further includes first and second trenches formed adjacent to the gate stack, where the first and second trenches are conically shaped to be wider at a top portion of each trench as compared to a width of each trench below the top portion of each trench. The semiconductor device further includes strained silicon alloy formed within the first and second trenches, where a stress force exerted on the channel region of the semiconductor device is maximized at a surface of the semiconductor device below the gate stack.
Abstract:
A communications cabinet includes a housing defining a location for mounting communications equipment, the housing having a wall formed of a first material with a first penetration resistance, a vent opening in the wall, and a door. At least one plate of material having a second penetration resistance greater than or about equal to the first penetration resistance is mounted between the vent opening and the location for mounting the communications equipment, and the plate is positioned to stop projectiles larger than a given size from traveling in a straight line from the at least one vent opening to the location for mounting communication equipment while leaving an airflow path from the vent opening to the location for mounting the communications equipment that passes around at least one edge of the plate of material through a gap between the at least one plate and the wall.
Abstract:
Session initiation protocol (SIP) control traffic routing decisions, such as rapid failure detection and recovery mechanisms, are based on detection of events and/or conditions that may result in suboptimal performance. The disclosed approach ensures that the SIP traffic is routed or rerouted on an optimal basis. Sample inputs to the SIP routing decisions, include integration with BFD, system metrics and other criteria to determine network and systems conditions, for dynamic decisions on where to optimally route SIP traffic. Examples leverage the B2BUA model, which maintains call state and participates in call processing, however, the examples introduce an improved routing model that is able to not only reroute SIP traffic based on failures but also upon the detection of other suboptimal conditions, e.g. excessive cost. The exemplary techniques provide significant savings by ensuring SIP peering decisions are automatically performed considering costs of peering arrangements, congestion and/or other criteria.