Abstract:
A pump mounting system for mounting a pump to a beverage dispensing system, featuring a pump having a housing configured with a pump-to-mounting bracket portion, and having a pump-to-hose connector portion; an elastic pump mounting bracket having a corresponding pump-to-mounting bracket portion configured to couple to the pump-to-mounting bracket portion of the pump in order to couple together the elastic mounting bracket and the pump, and having a system mounting bracket portion connected to the corresponding pump-to-mounting bracket portion to couple to at least some portion of the system, the elastic pump mounting bracket to dampen the transmission of vibration from one end of the pump to the system; and a flexible looped hose connection having a corresponding pump-to-hose connector portion to coupled to the pump-to-hose connector portion of the pump, and having a hose-to-system connector portion to couple to a corresponding hose-to-system connector portion of the system, an intermediate looped hose connection portion to couple together the corresponding pump-to-hose connector portion and the hose-to-system connector portion, the flexible looped hose connection to provide a flow path connection to the system and dampen the transmission of the vibration of the pump to the system via the flow path connection.
Abstract:
A fluid release valve includes valve housing (VH) coupled between a pump and an outlet pipe, VH chamber providing fluid from its inlet and outlet when the pump starts, and fluid release orifice (FRO) draining outlet pipe fluid flowing back into the VH when the pump stops; and check valve (CV) combination having a CV shuttle that moves towards/away from the inlet/outlet and an internal shuttle chamber (ISC), and having a CV that moves towards/away from the inlet/outlet within the ISC. The CV combination responds to a pumped fluid pressure when the pump's pumping and stops the fluid from flowing from the inlet around the CV shuttle and out the FRO. The CV combination responds to a fluid differential pressure (FDP) when the pump stops and allows the outlet pipe fluid to drain out the FRO until the FDP reaches an equilibrium.
Abstract:
A smart phone for using to optimize the energy production of a solar panel in real time by a user features a signal processor to receive GPS signaling containing information about the global position of the smart phone, and input signaling containing control information to initiate a GUI algorithm in the signal processor to determine visual and/or audio cues for a user on a proper alignment of a solar panel for optimal solar energy collection efficiency; and provide display imaging signaling from a screen of the smart phone, or audio signaling from a speaker in the smart phone containing information about the visual and/or audio cues for the user on the proper alignment of the solar panel for optimal solar efficiency, so as to enable the user to simultaneously adjust the planar orientation of the solar panel having the smart phone placed thereon, based on the visual and audio cues.
Abstract:
An air operated diaphragm pump is provided featuring a housing, a fluid passageway and an indicator arrangement. The housing is configured with an orifice. The fluid passageway responses to a vacuum force and provides fluid, such as syrup from a bag or container to a beverage dispenser, through the air operated diaphragm pump via the fluid passageway, and is configured with a suction plenum or channel formed by an enclosed space with an inside pressure that is greater than an external pressure of the outside atmosphere when the fluid is being provided through the air operated diaphragm pump via the fluid passageway. The suction plenum or channel is configured to be in fluidic communication with the orifice of the housing. The indicator arrangement is configured in relation to the orifice of the housing to communicate with the suction plenum or channel, and also configured to respond or activate when the vacuum force exceeds a predetermined level and provide a visual indication when the fluid is no longer being provided through the air operated diaphragm pump via the fluid passageway.
Abstract:
A pump system features a power adapter and a pump having a signal processor. The power adapter includes voltage settings that respond to a voltage setting by a user and provide a selected voltage. The signal processor receives signaling containing information about the selected voltage supplied to a motor to run the pump, and also containing information about whether a current draw of the pump is lower than a predetermined low current level or is higher than a predetermined high current level; and determines whether to shut off the pump after a predetermined time, based on the signaling received.