Abstract:
A head position adjustment mechanism includes two plates mounted so as to be displaceable in a scanning direction and in a sheet feed direction. The two plates can be adjusted independently in a scanning direction by angle adjusting levers that pivot the plates about reference pins. At least one plate can be adjusted in the sheet feed direction by a nozzle positioning adjusting lever that actuates a cam positioned to urge the plate in the sheet feed direction while the plate is guided by a reference pin.
Abstract:
A thermal printer includes a sprocket wheel (11) for forwarding sheets, a platen roller (9), a thermal head (26) pressed on the platen roller (9), and a reduction gear (8) by which a rotating drive of a motor is reduced and is communicated to the sprocket wheel (11) and the platen roller (9). The sprocket wheel (11) is engaged with perforations (33) of a transfer sheet (4), and the transfer sheet (4) and an ink ribbon (21) are forwarded while being tightly sandwiched between the platen roller (9) and the thermal head (26), and the ink of the ink ribbon (21) is thermally transferred onto the transfer sheet (4) by the thermal head (26). In the thermal printer, a gear (10) with a friction clutch is disposed between the platen roller (9) and the reduction gear (8), and the peripheral speed of the platen roller (9) is set to be higher than that of the sprocket wheel (11). A torque limitation value of the friction-clutch gear (10) is set equal to or less than a feeding load imposed between the transfer sheet (4) and the ink ribbon (21).
Abstract:
A printer case adaptable to print individual sheets of paper and fan-fold computer paper has a bottom case and a cover pivotably supported on the cover. The printer components are supported within the bottom case and a sheet guide is pivotably supported on the cover. The sheet guide pivots between a first position for guiding individual sheets into the printer and a second position for guiding fan-fold paper out of the printer once printing has occurred. A coupling structure is provided for pivotably coupling the cover to the bottom so that the cover may pivot between a first position in which the cover is closed to permit printing to occur and a second position in which the cover is open to expose the printer components and permit insertion of fan-fold paper.
Abstract:
A porous sintered body for an aluminum-titanium alloy electrolytic capacitor has a wire of nitrogenized titanium, or the like, implanted therein. A method of producing such a porous body subjects a titanium wire to a nitriding treatment, and embeds the nitrogenized Ti wire into a press-molded body of the mixture of aluminum and either titanium or titanium hydride powders. Then, the press-molded body is sintered. An excellent LC characteristic is obtained even under the sintering condition, and the aluminum-titanium electrolytic capacitor is devoid of bent lead wires.
Abstract:
A printing apparatus includes: a motor which drives a shaft of a roll body around which a medium is wound, in the feeding direction of the medium; a transport roller which transports the medium fed from the roll body; and a control section which supplies electric power for rotating the roll body to the motor, wherein the electric power that the control section supplies to the motor at the time of the start of the feeding of the medium is larger when the diameter of the medium that is wound around the roll body is R2 (
Abstract:
A fuel cell system which prevents the deterioration of the fuel cell stack when feeding of the oxidant gas is paused under a load to perform a fuel conservation operation. Controller shuts down oxidant gas compressor and cooling water circulating pump to execute fuel conservation operation at a low fuel cell system load. The controller gives a current draw instruction to electric power controller. In the fuel conservation operation, electric power controller draws a current larger than zero from fuel cell stack, and keeps the total charge drawn per unit time constant or substantially constant.
Abstract:
A fuel cell system has a plurality of fuel cells stacked in one or more groups of fuel cells. Each fuel cell includes a fuel electrode supplied with fuel gas at a fuel gas supply pressure, an oxidizing electrode supplied with oxidizing gas at an oxidizing gas supply pressure, and an electrolyte membrane disposed between the fuel electrode and the oxidizing electrode. A pressure-difference control unit generates a pressure difference across the membrane such that the fuel gas supply pressure is greater than the oxidizing gas supply pressure in each fuel cell, a cell-voltage measuring device measures a cell voltage for each fuel cell or each group of fuel cells in the fuel cell stack, and a leakage determination unit determines the presence or absence of a leaking cell based on the behavior of the cell voltage of each fuel cell while the pressure difference is increased with time.
Abstract:
There is provided a printing method using a first motor that applies a driving force for rotating a roll body around which a printing medium is wound, a second motor that applies a driving force for intermittently driving a transport driving roller that transports the printing medium, and a print head that intermittently ejects ink onto the printing medium alternately with the driving of the second motor. The printing method includes driving the first motor such that tension applied to the printing medium is constant during at least a part of a period in which the second motor is driven and stopping the driving of the first motor during at least a part of a period in which the driving of the second motor is stopped.
Abstract:
To prevent conveyance defects due to kicking, a printing device includes a conveyance roller for conveying a medium in a conveyance direction; a guide for supporting the medium on a top surface of the guide on an upstream side in the conveyance direction from the conveyance roller; and a head for ejecting ink and printing on the medium on a downstream side in the conveyance direction from the conveyance roller; wherein the top surface of the guide is positioned higher than a line tangent to the conveyance roller at a position of contact between the conveyance roller and the medium; and an end part of the guide on the downstream side in the conveyance direction has a smaller thickness in the direction in which the medium is supported than on the upstream side of the end part in the conveyance direction.
Abstract:
A position detecting device for detecting a position of an object, includes a light emitting portion that emits light, a light receiving portion that receives the light from the light emitting portion, and a scale that is arranged between the light emitting portion and the light receiving portion, and includes a position detecting pattern and a smear detecting pattern. The position detecting pattern has a first light transmitting portion for transmitting the light from the light emitting portion and a first light interception portion for intercepting the light from the light emitting portion which are alternately arranged in a detection range of the object. The smear detecting pattern for detecting smear of the scale has a second light transmitting portion for transmitting the light from the light emitting portion and a second light interception portion for intercepting the light from the light emitting portion which are alternately arranged.