Abstract:
An apparatus and method for scheduling a multiuser and a single user in a Multiple Input Multiple Output (MIMO) system are provided. The method for scheduling a multiuser and a single user at BS in MIMO system includes determining ratios of MultiUser-MIMO (MU-MIMO) chunks and Single User-MIMO (SU-MIMO) chunks to allocation chunks, determining the MU-MIMO chunks in the determined ratio and the remaining chunks as the SU-MIMO chunks, transmitting chunk information relating to the determined chunks to one or more Mobile Stations (MSs), and, when Channel Quality Information (CQI) feedback information relating to the determined MU-MIMO chunks and the determined SU-MIMO chunks is received from the MSs, allocating chunks and streams for MU-MIMO/SU-MIMO to users who maximize overall capacity using the CQI feedback information.
Abstract:
A method is provided a method for transmitting data in a MIMO communication system. The method includes receiving feedback information including channel quality information of transmission antennas from terminals; selecting one of a multi-user mode and a single user mode according to the channel quality information; extracting information for the selected mode from the feedback information; selecting at least one terminal and a preceding matrix of at least one transmission antenna through which data is transmitted according to the extracted information and the selected mode; and transmitting data using the selected precoding matrix and information of the selected terminal.
Abstract:
A method of reporting channel state information by a Mobile Station (MS) in a mobile communication system is disclosed. The method includes measuring a state of a downlink channel for the entire frequency band, determining a first Modulation and Coding Scheme (MCS) level corresponding to the measured channel state, and reporting the determined MCS level to a Base Station (BS).
Abstract:
A mobile communication apparatus that utilizes multiple base station/mobile station antennas and a mobile communication method performed therein are provided. The mobile communication apparatus includes a base station having at least two antennas and at least two mobile stations having at least one antenna, respectively. The base station restores weight information and channel status information from feedback signals received from the mobile stations, determines downlink investigation information that results in maximum transmission channel capacity based on the restored weight information and channel status information, selects mobile stations for simultaneous transmission based on the downlink investigation information, and processes data to be transmitted to the selected mobile stations based on the downlink investigation information.
Abstract:
A beam and power allocation method for a MIMO system transmitting multiple data streams from a transmitter having a plurality of transmit antennas to a receiver having at least two receive antennas, the transmit antennas being grouped based on feedback information from the receiver, includes obtaining covariance matrices for respective transmit antenna group, and allocating beam and power to the transmit antenna groups according to the covariance matrices of the respective antenna groups. The power allocation method can be adapted to various partial beamforming techniques by generalizing the optimization problem as a function of transmit covariance matrices.
Abstract:
A multiple-input multiple-output (MIMO) wireless communication system. A transmitter that includes a plurality of transmit antennas selects one of a spatial multiplexing scheme and a spatial diversity scheme, processes a signal in the selected transmission scheme, and transmits the signal through the plurality of transmit antennas. A receiver that includes a plurality of receive antennas processes a signal in a reception scheme mapped to a transmission scheme of the transmitter. The transmission schemes include a transmission scheme for maximizing diversity gain and a transmission scheme for maximizing spectral efficiency. The MIMO communication system using an adaptive transmission mode switching technique performs switching between MIMO transmission modes using spatial selectivity of a channel, thereby obtaining maximum gain in a signal to noise ratio (SNR) and spectral efficiency according to channel state.
Abstract:
The present invention discloses a mobile communication apparatus and method including a base station and a mobile station both having multi-antenna. As for the apparatus, including a base station and at least two mobile stations. The base station carries out the following functions: (a) restores weightied information and channel status information which have been decided by mobile stations from feedback signals received by mobile stations; (b) selects the downlink detect information which satisfies the largest transferring channel capacity from the above weighting information and channel status information which have been restored; (c) selects mobile stations to transmit at the same time from all mobile stations which are able to transmit using downlink detect information; and (d) processes data which will be transferred to select mobile stations with downlink detect information. The base station has at least one base station antenna, and the mobile station has at least one mobile station antenna.
Abstract:
Disclosed is a method for configuring transmission antenna groups in a mobile communication system with multiple transmission antennas and multiple reception antennas. The method includes the steps of: receiving a first matrix having a size of ‘Nt×Nt’, which corresponds to Nt number of transmission antennas, fedback from the mobile terminal, generating combinations of sub-matrixes of the first matrix corresponding to Nr number of reception antennas, and calculating sums of maximum eigenvalues; determining combinations of the sub-matrixes having a maximum value from among the calculated sums of eigenvalues to be transmission antenna groups for the Nt number of transmission antennas; and transmitting different relevant symbols from each other through the transmission antenna groups.
Abstract translation:公开了一种在具有多个发送天线和多个接收天线的移动通信系统中配置发送天线组的方法。 该方法包括以下步骤:接收一个大小为N N T N T N T N T N T N T N T N T N T N T N T N 发送天线,从移动终端反馈,生成与第N个接收天线数相对应的第一矩阵的子矩阵的组合,以及计算最大特征值的和; 确定具有最大值的子矩阵的组合,其中所计算的特征值之和成为发送天线的N T个数量的发送天线组; 并通过发射天线组彼此发送不同的相关符号。