Abstract:
A trusted computing environment, such as a smartcard, UICC, Java card, global platform, or the like may be used as a local host trust center and a proxy for a single-sign on (SSO) provider. This may be referred to as a local SSO provider (OP). This may be done, for example, to keep authentication traffic local and to prevent over the air communications, which may burden an operator network. To establish the OP proxy in the trusted environment, the trusted environment may bind to the SSO provider in a number of ways. For example, the SSO provider may interoperate with UICC-based UE authentication or GBA. In this way, user equipment may leverage the trusted environment in order to provide increased security and reduce over the air communications and authentication burden on the OP or operator network.
Abstract:
A wireless transmit/receive unit (WTRU) and a Node B, respectively, perform joint randomness not shared by others (JRNSO) measurement to generate JRNSO bits based on a channel estimate between the WTRU and the Node B. The WTRU and the Node B then perform a reconciliation procedure to generate a common JRNSO bits. The Node B sends the common JRNSO bits to a serving network. The WTRU and the SN secure a session key (such as an integrity key, a cipher key and an anonymity key), using the common JRNSO bits. The JRNSO measurements are performed on an on-going basis, and the session key is updated using a new set of common JRNSO bits. The JRNSO bits may be expanded by using a pseudorandom number generator (PNG) or a windowing technique. A handover may be intentionally induced to increase the JRNSO bits generation rate.
Abstract:
Methods and instrumentalities are disclosed that enable one or more domains on one or more devices to be owned or controlled by one or more different local or remote owners, while providing a level of system-wide management of those domains. Each domain may have a different owner, and each owner may specify policies for operation of its domain and for operation of its domain in relation to the platform on which the domain resides, and other domains. A system-wide domain manager may be resident on one of the domains. The system-wide domain manager may enforce the policies of the domain on which it is resident, and it may coordinate the enforcement of the other domains by their respective policies in relation to the domain in which the system-wide domain manager resides. Additionally, the system-wide domain manager may coordinate interaction among the other domains in accordance with their respective policies.
Abstract:
A method and apparatus for selecting a beam combination of beam switched antennas in a multiple-input multiple-output (MIMO) wireless communication system including a first node and a second node. The first node sends a plurality of modulation and coding scheme (MCS) requests to the second node. Each of the plurality of MCS requests is sent using a particular beam combination. The second node receives the MCS requests and generates MCS feedback signals for each of the MCS requests. Each MCS feedback signal includes an MCS recommendation for the particular beam. The first node selects a beam combination for communicating with the second node based on the MCS recommendations.
Abstract:
Universal integrated circuit card (UICC) having a virtual subscriber identity module functionality is disclosed. A wireless transmit/receive unit (WTRU) comprises a mobile equipment (ME) configured to perform wireless communication and a UICC. The UICC is configured to perform security functionalities. The UICC supports multiple isolated domains including UICC issuer's domain. Each domain is owned by a separate owner so that each owner stores and executes an application on the UICC under a control of an UICC issuer and the UICC issuer's domain controls creation and deletion of other domains and defines and enforces security rules for authorizing third parties to have an access to the domains. The UICC is configured to verify integrity of operating system functions and applications stored on the UICC. The UICC is configured to control an access to information regarding applications according to security policies stored within the UICC.
Abstract:
The present invention is related to a wireless communication system. 3G UMTS mobile phone systems rely on a protected smart card called the UMTS integrated circuit card (UICC) that provides UMTS subscriber identity module (USIM) applications as a basis or root of various security measures protecting the communication path between the 3G mobile terminal and the UMTS wireless network (or UTRAN). Disclosed is a method by which the UICC exchanges information with a terminal, such as an Internal Key Center (IKC 1250) and a Bootstrapping Server Function (BSF 1270) enables a procedure where multiple local keys specific to applications and Network Application Functions (NAFs) (Ks_local) are used for authentication and to encrypt and decrypt messages.
Abstract:
A mobile trusted platform (MTP) configured to provide virtual subscriber identify module (vSIM) services is disclosed. In one embodiment, the MTP includes: a device manufacturer-trusted subsystem (TSS-DM) configured to store and provide credentials related to a manufacturer of the MTP; a mobile network operator-trusted subsystem (MNO-TSS) configured to store and provide credentials related to a mobile network operator (MNO); and a device user/owner-trusted subsystem (TSS-DO/TSS-U) configured to store and provide credentials related to user of the MTP. The TSS-MNO includes a vSIM core services unit, configured to store, provide and process credential information relating to the MNO. The TSS-DO/TSS-U includes a vSIM management unit, configured to store, provide and process credential information relating to the user/owner of the MTP. The TSS-DO/TSS-U and the TSS-MNO communicate through a trusted vSIM service.
Abstract:
An embodiment is related to a database system for protecting data privacy and efficient organization of data. An enhanced database system comprises a DBMS, a data classifier, a database of applications and a rules and policy unit. The DBMS includes a query processor for processing a query from a user. The rules and policy unit outputs a pointer to a node within the data classification tree based on several criteria. In accordance with another embodiment, a DBMS residing within a communication network organizes data related to the ID of mobile users. In accordance with another embodiment, an enhanced database system comprises a DRM user agent and a DBMS. The DRM user agent receives a CO protected by DRM. The DBMS stores the CO and controls access to the CO based on restrictions specified in an RO associated with the CO.
Abstract:
The present invention discloses several methods to strengthen the integrity of entities, messages, and processing related to content distribution as defined by the Open Mobile Alliance (OMA) Digital Rights Management (DRM). The methods use techniques related to the Trusted Computing Group (TCG) specifications. A first embodiment uses TCG techniques to verify platform and DRM software integrity or trustworthiness, both with and without modifications to the DRM rights object acquisition protocol (ROAP) and DRM content format specifications. A second embodiment uses TCG techniques to strengthen the integrity of ROAP messages, constituent information, and processing without changing the existing ROAP protocol. A third embodiment uses TCG techniques to strengthen the integrity of the ROAP messages, information, and processing with some changes to the existing ROAP protocol.
Abstract:
A method and apparatus for selecting a beam combination of multiple-input multiple-output (MIMO) antennas are disclosed. A wireless transmit/receive unit (WTRUs) includes a plurality of antennas to generate a plurality of beams for supporting MIMO. At least one antenna is configured to generate multiple beams, such that various beam combinations can be produced and a desired beam combination selected for conducting wireless communication with another WTRU. A quality metric is measured with respect to each or subset of the possible beam combinations. A desired beam combination for MIMO transmission and reception is selected based on the quality metric measurements.