摘要:
A mobile trusted platform (MTP) configured to provide virtual subscriber identify module (vSIM) services is disclosed. In one embodiment, the MTP includes: a device manufacturer-trusted subsystem (TSS-DM) configured to store and provide credentials related to a manufacturer of the MTP; a mobile network operator—trusted subsystem (MNO-TSS) configured to store and provide credentials related to a mobile network operator (MNO); and a device user/owner—trusted subsystem (TSS-DO/TSS-U) configured to store and provide credentials related to user of the MTP. The TSS-MNO includes a vSIM core services unit, configured to store, provide and process credential information relating to the MNO. The TSS-DO/TSS-U includes a vSIM management unit, configured to store, provide and process credential information relating to the user/owner of the MTP. The TSS-DO/TSS-U and the TSS-MNO communicate through a trusted vSIM service.
摘要:
A mobile trusted platform (MTP) configured to provide virtual subscriber identify module (vSIM) services is disclosed. In one embodiment, the MTP includes: a device manufacturer-trusted subsystem (TSS-DM) configured to store and provide credentials related to a manufacturer of the MTP; a mobile network operator-trusted subsystem (MNO-TSS) configured to store and provide credentials related to a mobile network operator (MNO); and a device user/owner-trusted subsystem (TSS-DO/TSS-U) configured to store and provide credentials related to user of the MTP. The TSS-MNO includes a vSIM core services unit, configured to store, provide and process credential information relating to the MNO. The TSS-DO/TSS-U includes a vSIM management unit, configured to store, provide and process credential information relating to the user/owner of the MTP. The TSS-DO/TSS-U and the TSS-MNO communicate through a trusted vSIM service.
摘要:
A mobile trusted platform (MTP) configured to provide virtual subscriber identify module (vSIM) services is disclosed. In one embodiment, the MTP includes: a device manufacturer-trusted subsystem (TSS-DM) configured to store and provide credentials related to a manufacturer of the MTP; a mobile network operator-trusted subsystem (MNO-TSS) configured to store and provide credentials related to a mobile network operator (MNO); and a device user/owner-trusted subsystem (TSS-DO/TSS-U) configured to store and provide credentials related to user of the MTP. The TSS-MNO includes a vSIM core services unit, configured to store, provide and process credential information relating to the MNO. The TSS-DO/TSS-U includes a vSIM management unit, configured to store, provide and process credential information relating to the user/owner of the MTP. The TSS-DO/TSS-U and the TSS-MNO communicate through a trusted vSIM service.
摘要:
The present invention is related to a wireless communication system. 3G UMTS mobile phone systems rely on a protected smart card called the UMTS integrated circuit card (UICC) that provides UMTS subscriber identity module (USIM) applications as a basis or root of various security measures protecting the communication path between the 3G mobile terminal and the UMTS wireless network (or UTRAN). Disclosed is a method by which the UICC exchanges information with a terminal, such as an Internal Key Center (IKC 1250) and a Bootstrapping Server Function (BSF 1270) enables a procedure where multiple local keys specific to applications and Network Application Functions (NAFs) (Ks_local) are used for authentication and to encrypt and decrypt messages.
摘要:
The present invention is related to a wireless communication system. 3G UMTS mobile phone systems rely on a protected smart card called the UMTS integrated circuit card (UICC) that provides UMTS subscriber identity module (USIM) applications as a basis or root of various security measures protecting the communication path between the 3G mobile terminal and the UMTS wireless network (or UTRAN). Disclosed is a method by which the UICC exchanges information with a terminal, such as an Internal Key Center (IKC 1250) and a Bootstrapping Server Function (BSF 1270) enables a procedure where multiple local keys specific to applications and Network Application Functions (NAFs) (Ks_local) are used for authentication and to encrypt and decrypt messages.
摘要:
An apparatus and method for providing home evolved node-B (H(e)NB) integrity verification and validation using autonomous validation and semi-autonomous validation is disclosed herein.
摘要:
Methods and instrumentalities are disclosed that enable one or more domains on one or more devices to be owned or controlled by one or more different local or remote owners, while providing a level of system-wide management of those domains. Each domain may have a different owner, and each owner may specify policies for operation of its domain and for operation of its domain in relation to the platform on which the domain resides, and other domains. A system-wide domain manager may be resident on one of the domains. The system-wide domain manager may enforce the policies of the domain on which it is resident, and it may coordinate the enforcement of the other domains by their respective policies in relation to the domain in which the system-wide domain manager resides. Additionally, the system-wide domain manager may coordinate interaction among the other domains in accordance with their respective policies.
摘要:
Methods, components and apparatus for implementing platform validation and management (PVM) are disclosed. PVM provides the functionality and operations of a platform validation entity with remote management of devices by device management components and systems such as a home node-B management system or component. Example PVM operations bring devices into a secure target state before allowing connectivity and access to a core network.
摘要:
An apparatus and method for providing home evolved node-B (H(e)NB) integrity verification and validation using autonomous validation and semi-autonomous validation is disclosed herein.
摘要:
Methods and instrumentalities are disclosed that enable one or more domains on one or more devices to be owned or controlled by one or more different local or remote owners, while providing a level of system-wide management of those domains. Each domain may have a different owner, and each owner may specify policies for operation of its domain and for operation of its domain in relation to the platform on which the domain resides, and other domains. A system-wide domain manager may be resident on one of the domains. The system-wide domain manager may enforce the policies of the domain on which it is resident, and it may coordinate the enforcement of the other domains by their respective policies in relation to the domain in which the system-wide domain manager resides. Additionally, the system-wide domain manager may coordinate interaction among the other domains in accordance with their respective policies.